Unknown

Dataset Information

0

Loss of Ubiquitin Carboxy-Terminal Hydrolase L1 Impairs Long-Term Differentiation Competence and Metabolic Regulation in Murine Spermatogonial Stem Cells.


ABSTRACT: Spermatogonia are stem and progenitor cells responsible for maintaining mammalian spermatogenesis. Preserving the balance between self-renewal of spermatogonial stem cells (SSCs) and differentiation is critical for spermatogenesis and fertility. Ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) is highly expressed in spermatogonia of many species; however, its functional role has not been identified. Here, we aimed to understand the role of UCH-L1 in murine spermatogonia using a Uch-l1-/- mouse model. We confirmed that UCH-L1 is expressed in undifferentiated and early-differentiating spermatogonia in the post-natal mammalian testis. The Uch-l1-/- mice showed reduced testis weight and progressive degeneration of seminiferous tubules. Single-cell transcriptome analysis detected a dysregulated metabolic profile in spermatogonia of Uch-l1-/- compared to wild-type mice. Furthermore, cultured Uch-l1-/- SSCs had decreased capacity in regenerating full spermatogenesis after transplantation in vivo and accelerated oxidative phosphorylation (OXPHOS) during maintenance in vitro. Together, these results indicate that the absence of UCH-L1 impacts the maintenance of SSC homeostasis and metabolism and impacts the differentiation competence. Metabolic perturbations associated with loss of UCH-L1 appear to underlie a reduced capacity for supporting spermatogenesis and fertility with age. This work is one step further in understanding the complex regulatory circuits underlying SSC function.

SUBMITTER: Alpaugh WF 

PROVIDER: S-EPMC8465610 | biostudies-literature | 2021 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Loss of Ubiquitin Carboxy-Terminal Hydrolase L1 Impairs Long-Term Differentiation Competence and Metabolic Regulation in Murine Spermatogonial Stem Cells.

Alpaugh Whitney F WF   Voigt Anna L AL   Dardari Rkia R   Su Lin L   Al Khatib Iman I   Shin Wisoo W   Goldsmith Taylor M TM   Coyle Krysta M KM   Tang Lin A LA   Shutt Timothy E TE   Klein Claudia C   Biernaskie Jeff J   Dobrinski Ina I  

Cells 20210831 9


Spermatogonia are stem and progenitor cells responsible for maintaining mammalian spermatogenesis. Preserving the balance between self-renewal of spermatogonial stem cells (SSCs) and differentiation is critical for spermatogenesis and fertility. Ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) is highly expressed in spermatogonia of many species; however, its functional role has not been identified. Here, we aimed to understand the role of UCH-L1 in murine spermatogonia using a <i>Uch-l1<sup>-/-  ...[more]

Similar Datasets

| S-EPMC2848225 | biostudies-literature
| S-EPMC3278044 | biostudies-literature
| S-EPMC3372403 | biostudies-literature
| S-EPMC6475369 | biostudies-literature
| S-EPMC5584584 | biostudies-literature
| S-EPMC2748938 | biostudies-literature
| S-EPMC11743582 | biostudies-literature
| S-EPMC10816476 | biostudies-literature
| S-EPMC9953523 | biostudies-literature
| S-EPMC2729380 | biostudies-literature