Unknown

Dataset Information

0

Role of Ezrin/Radixin/Moesin in the Surface Localization of Programmed Cell Death Ligand-1 in Human Colon Adenocarcinoma LS180 Cells.


ABSTRACT: Programmed cell death ligand-1 (PD-L1), an immune checkpoint protein highly expressed on the cell surface in various cancer cell types, binds to programmed cell death-1 (PD-1), leading to T-cell dysfunction and tumor survival. Despite clinical successes of PD-1/PD-L1 blockade therapies, patients with colorectal cancer (CRC) receive little benefit because most cases respond poorly. Because high PD-L1 expression is associated with immune evasion and poor prognosis in CRC patients, identifying potential modulators for the plasma membrane localization of PD-L1 may represent a novel therapeutic strategy for enhancing the efficacy of PD-1/PD-L1 blockade therapies. Here, we investigated whether PD-L1 expression in human colorectal adenocarcinoma cells (LS180) is affected by ezrin/radixin/moesin (ERM), functioning as scaffold proteins that crosslink plasma membrane proteins with the actin cytoskeleton. We observed colocalization of PD-L1 with all three ERM proteins in the plasma membrane and detected interactions involving PD-L1, the three ERM proteins, and the actin cytoskeleton. Furthermore, gene silencing of ezrin and radixin, but not of moesin, substantially decreased the expression of PD-L1 on the cell surface without affecting its mRNA level. Thus, in LS180 cells, ezrin and radixin may function as scaffold proteins mediating the plasma membrane localization of PD-L1, possibly by post-translational modification.

SUBMITTER: Kobori T 

PROVIDER: S-EPMC8467328 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8112653 | biostudies-literature
| S-EPMC7437180 | biostudies-literature
| S-EPMC3826749 | biostudies-literature
| S-EPMC4955964 | biostudies-literature
| S-EPMC3772999 | biostudies-literature
| S-EPMC4015342 | biostudies-literature
| S-EPMC8469114 | biostudies-literature
| S-SCDT-10_1038-S44318-024-00173-7 | biostudies-other
| S-EPMC3619129 | biostudies-literature
| S-EPMC4858966 | biostudies-literature