Unknown

Dataset Information

0

Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis.


ABSTRACT: Analysis of single-cell multiomics datasets is a novel topic and is considerably challenging because such datasets contain a large number of features with numerous missing values. In this study, we implemented a recently proposed tensor-decomposition (TD)-based unsupervised feature extraction (FE) technique to address this difficult problem. The technique can successfully integrate single-cell multiomics data composed of gene expression, DNA methylation, and accessibility. Although the last two have large dimensions, as many as ten million, containing only a few percentage of nonzero values, TD-based unsupervised FE can integrate three omics datasets without filling in missing values. Together with UMAP, which is used frequently when embedding single-cell measurements into two-dimensional space, TD-based unsupervised FE can produce two-dimensional embedding coincident with classification when integrating single-cell omics datasets. Genes selected based on TD-based unsupervised FE are also significantly related to reasonable biological roles.

SUBMITTER: Taguchi YH 

PROVIDER: S-EPMC8468466 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7763286 | biostudies-literature
| S-EPMC6761323 | biostudies-literature
| S-EPMC5571984 | biostudies-literature
| S-EPMC7394334 | biostudies-literature
| S-EPMC5763504 | biostudies-literature
| S-EPMC9580456 | biostudies-literature
| S-EPMC8076323 | biostudies-literature
| S-EPMC7469919 | biostudies-literature
| S-EPMC7485840 | biostudies-literature
| S-EPMC5653784 | biostudies-literature