Water-Soluble Visible Light Sensitive Photoinitiating System Based on Charge Transfer Complexes for the 3D Printing of Hydrogels.
Ontology highlight
ABSTRACT: The development of visible-light 3D printing technology by using water-soluble initiating systems has attracted widespread attention due to their potential applications in the manufacture of hydrogels. Besides, at present, the preparation of water-soluble photoinitiators suitable for visible light irradiation (such as LEDs) still remains a challenge. Therefore, this work is devoted to developing water-soluble photoinitiators (PI)/photoinitiating systems (PIS) upon irradiation with a LED @ 405 nm. In detail, a new water-slightly-soluble chalcone derivative dye [(E)-3-(4-(dimethylamino) phenyl)-1-(4-(2-(2-(2-methoxyethoxy) ethoxy) ethoxy) phenyl) prop-2-en-1-one] was synthesized here and used as a PI with a water-soluble coinitiator, i.e., triethanolamine (TEA) which was also used as an electron donor. When combined together, a charge transfer complex (CTC) formed immediately which exhibited excellent initiating ability for the free radical photopolymerization of poly(ethyleneglycol)diacrylate (PEG-DA). In light of the powerful CTC effect, the [dye-TEA] CTC could not only exhibit enhanced water solubility and mechanical properties but could also be effectively applied for 3D printing. This CTC system is environmentally friendly and cost-saving which demonstrates a great potential to prepare hydrogels via photopolymerization.
SUBMITTER: Chen H
PROVIDER: S-EPMC8470713 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA