Unknown

Dataset Information

0

Design and Prototyping of Genetically Encoded Arsenic Biosensors Based on Transcriptional Regulator AfArsR.


ABSTRACT: Genetically encoded biosensors based on engineered fluorescent proteins (FPs) are essential tools for monitoring the dynamics of specific ions and molecules in biological systems. Arsenic ion in the +3 oxidation state (As3+) is highly toxic to cells due to its ability to bind to protein thiol groups, leading to inhibition of protein function, disruption of protein-protein interactions, and eventually to cell death. A genetically encoded biosensor for the detection of As3+ could potentially facilitate the investigation of such toxicity both in vitro and in vivo. Here, we designed and developed two prototype genetically encoded arsenic biosensors (GEARs), based on a bacterial As3+ responsive transcriptional factor AfArsR from Acidithiobacillus ferrooxidans. We constructed FRET-based GEAR biosensors by insertion of AfArsR between FP acceptor/donor FRET pairs. We further designed and engineered single FP-based GEAR biosensors by insertion of AfArsR into GFP. These constructs represent prototypes for a new family of biosensors based on the ArsR transcriptional factor scaffold. Further improvements of the GEAR biosensor family could lead to variants with suitable performance for detection of As3+ in various biological and environmental systems.

SUBMITTER: Khan SS 

PROVIDER: S-EPMC8470949 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3000468 | biostudies-literature
| S-EPMC11374718 | biostudies-literature
| S-EPMC3225322 | biostudies-literature
| S-EPMC5087393 | biostudies-literature
| S-EPMC3627919 | biostudies-literature
| S-EPMC4109810 | biostudies-literature
| S-EPMC6104821 | biostudies-other
| S-EPMC3781335 | biostudies-literature
| S-EPMC7462118 | biostudies-literature
| S-EPMC4303335 | biostudies-literature