Unknown

Dataset Information

0

Sustained-Release and pH-Adjusted Alginate Microspheres-Encapsulated Doxorubicin Inhibit the Viabilities in Hepatocellular Carcinoma-Derived Cells.


ABSTRACT: The objective of this study aimed to develop biodegradable calcium alginate microspheres carrying doxorubicin (Dox) at the micrometer-scale for sustained release and the capacity of pH regulatory for transarterial chemoembolization. Ultrasonic atomization and CaCl2 cross-linking technologies were used to prepare the microspheres. A 4-by-5 experiment was first designed to identify imperative parameters. The concentration of CaCl2 and the flow rate of the pump were found to be critical to generate microspheres with a constant volume median diameter (~39 μm) across five groups with different alginate: NaHCO3 ratios using each corresponding flow rate. In each group, the encapsulation efficiency was positively correlated to the Dox-loading %. Fourier-transform infrared spectroscopy showed that NaHCO3 and Dox were step-by-step incorporated into the calcium alginate microspheres successfully. Microspheres containing alginate: NaHCO3 = 1 exhibited rough and porous surfaces, high Young's modulus, and hardness. In each group with the same alginate: NaHCO3 ratio, the swelling rates of microspheres were higher in PBS containing 10% FBS compared to those in PBS alone. Microspheres with relatively high NaHCO3 concentrations in PBS containing 10% FBS maintained better physiological pH and higher accumulated Dox release ratios. In two distinct hepatocellular carcinoma-derived cell lines, treatments with microspheres carrying Dox demonstrated that the cell viabilities decreased in groups with relatively high NaHCO3 ratios in time- and dose-dependent manners. Our results suggested that biodegradable alginate microspheres containing relatively high NaHCO3 concentrations improved the cytotoxicity effects in vitro.

SUBMITTER: Pan CT 

PROVIDER: S-EPMC8471522 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7729399 | biostudies-literature
| S-EPMC8149846 | biostudies-literature
| S-EPMC7327764 | biostudies-literature
| S-EPMC4641710 | biostudies-literature
| S-EPMC5473605 | biostudies-literature
| S-EPMC5687098 | biostudies-literature
| S-EPMC10357574 | biostudies-literature
| S-EPMC3970914 | biostudies-literature
| S-EPMC6044568 | biostudies-literature
| S-EPMC4644481 | biostudies-literature