Unknown

Dataset Information

0

Agaricales Mushroom Lignin Peroxidase: From Structure-Function to Degradative Capabilities.


ABSTRACT: Lignin biodegradation has been extensively studied in white-rot fungi, which largely belong to order Polyporales. Among the enzymes that wood-rotting polypores secrete, lignin peroxidases (LiPs) have been labeled as the most efficient. Here, we characterize a similar enzyme (ApeLiP) from a fungus of the order Agaricales (with ~13,000 described species), the soil-inhabiting mushroom Agrocybe pediades. X-ray crystallography revealed that ApeLiP is structurally related to Polyporales LiPs, with a conserved heme-pocket and a solvent-exposed tryptophan. Its biochemical characterization shows that ApeLiP can oxidize both phenolic and non-phenolic lignin model-compounds, as well as different dyes. Moreover, using stopped-flow rapid spectrophotometry and 2D-NMR, we demonstrate that ApeLiP can also act on real lignin. Characterization of a variant lacking the above tryptophan residue shows that this is the oxidation site for lignin and other high redox-potential substrates, and also plays a role in phenolic substrate oxidation. The reduction potentials of the catalytic-cycle intermediates were estimated by stopped-flow in equilibrium reactions, showing similar activation by H2O2, but a lower potential for the rate-limiting step (compound-II reduction) compared to other LiPs. Unexpectedly, ApeLiP was stable from acidic to basic pH, a relevant feature for application considering its different optima for oxidation of phenolic and nonphenolic compounds.

SUBMITTER: Sanchez-Ruiz MI 

PROVIDER: S-EPMC8472802 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC45743 | biostudies-other
| S-EPMC3902061 | biostudies-literature
| S-EPMC6955660 | biostudies-literature
| S-EPMC8480192 | biostudies-literature
| S-EPMC11293268 | biostudies-literature
| S-EPMC1302970 | biostudies-literature
| S-EPMC9976348 | biostudies-literature
| S-EPMC3746097 | biostudies-literature
| S-EPMC7677534 | biostudies-literature
| S-EPMC5467052 | biostudies-literature