Project description:Stenotrophomonas maltophilia is an emerging multidrug resistance opportunistic pathogen affecting immunocompromised and hospitalized patients. S. maltophilia is an environmental bacterium which adapts to human body and causing infection. S. rhizophilia, a non-pathogenic and phylogenetic neighbour of S. maltophilia is unable to grow at human body temperature. Thus, to understand molecular mechanism underlying the adaptation of S. maltophilia at human body temperature, we performed the comparative transcriptome analysis of S.maltophilia at 28 °C (representative for the environmental niches) and 37 °C (representative for human body) by using RNA-Seq. The major temperature-induced genes include genes for Type IV secretion system, aerotaxis, and cation diffusion facilitator family transporter suggesting its potential role in the adaptation and virulence of S. maltophilia. The downregulated genes at 37 °C includes the genes for the cell motility, energy generation and metabolism, lipid metabolism, translation, amino acid metabolism and transport, replication and repair, inorganic ion and transport metabolism lipid metabolism, coenzyme metabolism.
Project description:Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed.
Project description:We sought to determine how a cystic fibrosis isolate of Stenotrophomonas maltophilia responds to relevant pH gradients (pH 5, 7, and 9) by growing the bacterium in phosphate buffered media and conducting RNAseq experiments. Our data suggests acidic conditions are stressful for strain FLR19, as it responded by increasing expression of stress-response and antibiotic-resistance genes.
Project description:Bacterial populations diversify during infection into distinct subpopulations that coexist within the human body. Yet, it is unknown to what extent subpopulations adapt to location-specific selective pressures as they migrate and evolve across space. Here we identify bacterial genes under local and global selection by testing for spatial co-occurrence of adaptive mutations. We sequence 552 genomes of the pathogen Stenotrophomonas maltophilia across 23 sites of the lungs from a patient with cystic fibrosis. We show that although genetically close isolates colocalize in space, distant lineages with distinct phenotypes separated by adaptive mutations spread throughout the lung, suggesting global selective pressures. Yet, for one gene (a distant homologue of the merC gene implicated in metal resistance), mutations arising independently in two lineages colocalize in space, providing evidence for location-specific selection. Our work presents a general framework for understanding how selection acts upon a pathogen that colonizes and evolves across the complex environment of the human body.
Project description:Stenotrophomonas maltophilia is a non-fermenting Gram-negative bacterium that is ubiquitous in the environment. In humans, this opportunistic multi-drug-resistant pathogen is responsible for a plethora of healthcare-associated infections. Here, we utilized a whole genome sequencing (WGS)-based phylogenomic core single nucleotide polymorphism (SNP) approach to characterize S. maltophilia subgroups, their potential association with human infection, and to detect any possible transmission events. In total, 89 isolates (67 clinical and 22 environmental) from Germany were sequenced. Fully finished genomes of five strains were included in the dataset for the core SNP phylogenomic analysis. WGS data were compared with conventional genotyping results as well as with underlying disease, biofilm formation, protease activity, lipopolysaccharide (LPS) SDS-PAGE profiles, and serological specificity of an antibody raised against the surface-exposed O-antigen of strain S. maltophilia K279a. The WGS-based phylogenies grouped the strains into 12 clades, out of which 6 contained exclusively human and 3 exclusively environmental isolates. Biofilm formation and proteolytic activity did correlate neither with the phylogenetic tree, nor with the origin of isolates. In contrast, the genomic classification correlated well with the reactivity of the strains against the K279a O-specific antibody, as well as in part with the LPS profiles. Three clusters of clinical strains had a maximum distance of 25 distinct SNP positions, pointing to possible transmission events or acquisition from the same source. In conclusion, these findings indicate the presence of specific subgroups of S. maltophilia strains adapted to the human host.
Project description:Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.
Project description:Tropheryma whipplei, the agent responsible for Whipple disease, is a poorly known pathogen suspected to have an environmental origin. The availability of the sequence of the 0.92-Mb genome of this organism made a global gene expression analysis in response to thermal stresses feasible, which resulted in unique transcription profiles. A few genes were differentially transcribed after 15 min of exposure at 43 degrees C. The effects observed included up-regulation of the dnaK regulon, which is composed of six genes and is likely to be under control of two HspR-associated inverted repeats (HAIR motifs) found in the 5' region. Putative virulence factors, like the RibC and IspDF proteins, were also overexpressed. While it was not affected much by heat shock, the T. whipplei transcriptome was strongly modified following cold shock at 4 degrees C. For the 149 genes that were differentially transcribed, eight regulons were identified, and one of them was composed of five genes exhibiting similarity with genes encoding ABC transporters. Up-regulation of these genes suggested that there was an increase in nutrient uptake when the bacterium was exposed to cold stress. As observed for other bacterial species, the major classes of differentially transcribed genes encode membrane proteins and enzymes involved in fatty acid biosynthesis, indicating that membrane modifications are critical. Paradoxically, the heat shock proteins GroEL2 and ClpP1 were up-regulated. Altogether, the data show that despite the lack of classical regulation pathways, T. whipplei exhibits an adaptive response to thermal stresses which is consistent with its specific environmental origin and could allow survival under cold conditions.
Project description:S. maltophilia was exposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessels bioreactors for 14 days, while the control group was performed in the same bioreactors under normal gravity (NG) environment. After that, combined phenotypic, genomic, transcriptomic and proteomic analyses were conducted to compare the influence of the SMG and NG on S. maltophilia.
Project description:Stenotrophomonas maltophilia, a gram-negative bacterium, has increasingly emerged as an important nosocomial pathogen. It is well-known for resistance to a variety of antimicrobial agents including cationic antimicrobial polypeptides (CAPs). Resistance to polymyxin B, a kind of CAPs, is known to be controlled by the two-component system PhoPQ. To unravel the role of PhoPQ in polymyxin B resistance of S. maltophilia, a phoP mutant was constructed. We found MICs of polymyxin B, chloramphenicol, ampicillin, gentamicin, kanamycin, streptomycin and spectinomycin decreased 2-64 fold in the phoP mutant. Complementation of the phoP mutant by the wild-type phoP gene restored all of the MICs to the wild type levels. Expression of PhoP was shown to be autoregulated and responsive to Mg2+ levels. The polymyxin B and gentamicin killing tests indicated that pretreatment of low Mg2+ can protect the wild-type S. maltophilia from killing but not phoP mutant. Interestingly, we found phoP mutant had a decrease in expression of SmeZ, an efflux transporter protein for aminoglycosides in S. maltophilia. Moreover, phoP mutant showed increased permeability in the cell membrane relative to the wild-type. In summary, we demonstrated the two-component regulator PhoP of S. maltophilia is involved in antimicrobial susceptibilities and low Mg2+ serves as a signal for triggering the pathway. Both the alteration in membrane permeability and downregulation of SmeZ efflux transporter in the phoP mutant contributed to the increased drug susceptibilities of S. maltophilia, in particular for aminoglycosides. This is the first report to describe the role of the Mg2+-sensing PhoP signaling pathway of S. maltophilia in regulation of the SmeZ efflux transporter and in antimicrobial susceptibilities. This study suggests PhoPQ TCS may serve as a target for development of antimicrobial agents against multidrug-resistant S. maltophilia.
Project description:Stenotrophomonas maltophilia is an aerobic, non-fermentative Gram-negative bacterium widespread in the environment. S. maltophilia Sm777 exhibits innate resistance to multiple antimicrobial agents. Furthermore, this bacterium tolerates high levels (0.1 to 50 mM) of various toxic metals, such as Cd, Pb, Co, Zn, Hg, Ag, selenite, tellurite and uranyl. S. maltophilia Sm777 was able to grow in the presence of 50 mM selenite and 25 mM tellurite and to reduce them to elemental selenium (Se(0)) and tellurium (Te(0)) respectively. Transmission electron microscopy and energy dispersive X-ray analysis showed cytoplasmic nanometer-sized electron-dense Se(0) granules and Te(0) crystals. Moreover, this bacterium can withstand up to 2 mM CdCl(2) and accumulate this metal up to 4% of its biomass. The analysis of soluble thiols in response to ten different metals showed eightfold increase of the intracellular pool of cysteine only in response to cadmium. Measurements by Cd K-edge EXAFS spectroscopy indicated the formation of Cd-S clusters in strain Sm777. Cysteine is likely to be involved in Cd tolerance and in CdS-clusters formation. Our data suggest that besides high tolerance to antibiotics by efflux mechanisms, S. maltophilia Sm777 has developed at least two different mechanisms to overcome metal toxicity, reduction of oxyanions to non-toxic elemental ions and detoxification of Cd into CdS.