Ontology highlight
ABSTRACT: Background
Understanding which factors influence dietary intake, particularly in daily life, is crucial given the impact diet has on physical as well as mental health. However, a factor might influence whether but not how much an individual eats and vice versa or a factor's importance may differ across these two facets. Distinguishing between these two facets, hence, studying dietary intake as a dual process is conceptually promising and not only allows further insights, but also solves a statistical issue. When assessing the association between a predictor (e.g. momentary affect) and subsequent dietary intake in daily life through ecological momentary assessment (EMA), the outcome variable (e.g. energy intake within a predefined time-interval) is semicontinuous. That is, one part is equal to zero (i.e. no dietary intake occurred) and the other contains right-skewed positive values (i.e. dietary intake occurred, but often only small amounts are consumed). However, linear multilevel modelling which is commonly used for EMA data to account for repeated measures within individuals cannot be applied to semicontinuous outcomes. A highly informative statistical approach for semicontinuous outcomes is multilevel two-part modelling which treats the outcome as generated by a dual process, combining a multilevel logistic/probit regression for zeros and a multilevel (generalized) linear regression for nonzero values.Methods
A multilevel two-part model combining a multilevel logistic regression to predict whether an individual eats and a multilevel gamma regression to predict how much is eaten, if an individual eats, is proposed. Its general implementation in R, a widely used and freely available statistical software, using the R-package brms is described. To illustrate its practical application, the analytical approach is applied exemplary to data from the Eat2beNICE-APPetite-study.Results
Results highlight that the proposed multilevel two-part model reveals process-specific associations which cannot be detected through traditional multilevel modelling.Conclusions
This paper is the first to introduce multilevel two-part modelling as a novel analytical approach to study dietary intake in daily life. Studying dietary intake through multilevel two-part modelling is conceptually as well as methodologically promising. Findings can be translated to tailored nutritional interventions targeting either the occurrence or the amount of dietary intake.
SUBMITTER: Ruf A
PROVIDER: S-EPMC8477527 | biostudies-literature |
REPOSITORIES: biostudies-literature