Project description:Growth-restricted fetuses are at risk for a variety of lifelong medical conditions. Preeclampsia, a life-threatening hypertensive disorder of pregnancy, is associated with fetuses who suffer from intrauterine growth restriction (IUGR). Recently, emerging evidence indicates that preeclamptic women harbor AT(1) receptor agonistic autoantibodies (AT(1)-AAs) that contribute to the disease features. However, the exact role of AT(1)-AAs in IUGR and the underlying mechanisms have not been identified. We report that these autoantibodies are present in the cord blood of women with preeclampsia and retain the ability to activate AT(1) receptors. Using an autoantibody-induced animal model of preeclampsia, we show that AT(1)-AAs cross the mouse placenta, enter fetal circulation, and lead to small fetuses with organ growth retardation. AT(1)-AAs also induce apoptosis in the placentas of pregnant mice, human villous explants, and human trophoblast cells. Finally, autoantibody-induced IUGR and placental apoptosis are diminished by either losartan or an autoantibody-neutralizing peptide. Thus, these studies identify AT(1)-AA as a novel causative factor of preeclampsia-associated IUGR and offer two possible underlying mechanisms: a direct detrimental effect on fetal development by crossing the placenta and entering fetal circulation, and indirectly through AT(1)-AA-induced placental damage. Our findings highlight AT(1)-AAs as important therapeutic targets.
Project description:BackgroundThe left ventricular remodeling (LVR) process has limited the effectiveness of therapies after myocardial infarction. The relationship between autoantibodies activating AT1R-AAs (angiotensin II receptor type 1-AAs) and ETAR-AAs (autoantibodies activating endothelin-1 receptor type A) with myocardial infarction has been described. Among patients with ST-segment-elevation myocardial infarction, we investigated the relationship between these autoantibodies with LVR and subsequent major adverse cardiac events.Methods and resultsIn this prospective observational study, we included 131 patients with ST-segment-elevation myocardial infarction (61±11 years of age, 112 men) treated with primary percutaneous coronary intervention. Within 48 hours of admission, 2-dimensional transthoracic echocardiography was performed, and blood samples were obtained. The seropositive threshold for AT1R-AAs and ETAR-AAs was >10 U/mL. Patients were followed up at 6 months, when repeat transthoracic echocardiography was performed. The primary end points were LVR, defined as a 20% increase in left ventricular end-diastolic volume index, and major adverse cardiac event occurrence at follow-up, defined as cardiac death, nonfatal re-myocardial infarction, and hospitalization for heart failure. Forty-one (31%) patients experienced LVR. The prevalence of AT1R-AAs and ETAR-AAs seropositivity was higher in patients with versus without LVR (39% versus 11%, P<0.001 and 37% versus 12%, P=0.001, respectively). In multivariable analysis, AT1R-AAs seropositivity was significantly associated with LVR (odds ratio [OR], 4.66; P=0.002) and represented a risk factor for subsequent major adverse cardiac events (OR, 19.6; P=0.002).ConclusionsAT1R-AAs and ETAR-AAs are associated with LVR in patients with ST-segment-elevation myocardial infarction. AT1R-AAs are also significantly associated with recurrent major adverse cardiac events. These initial observations may set the stage for a better pathophysiological understanding of the mechanisms contributing to LVR and ST-segment-elevation myocardial infarction prognosis.
Project description:ImportanceAngiotensin II is significantly associated with the pathogenesis of acute aortic dissection. Angiotensin II type 1 receptor agonistic autoantibodies (AT1-AAs) can mimic the effect of angiotensin II.ObjectiveTo investigate the association between AT1-AAs and all-cause and cause-specific mortality risk in patients with acute aortic dissection.Design, setting, and participantsA total of 662 patients with clinically suspected aortic dissection from 3 medical centers in Wuhan, China, were enrolled in this cohort study from August 1, 2014, to July 31, 2016. Of these, 315 patients were included in the 3-year follow-up study. Follow-up was mainly performed via telephone interviews and outpatient clinic visits. Data analysis was conducted from March 1 to May 31, 2020.Main outcomes and measuresThe primary outcomes of interest were all-cause mortality, death due to aortic dissection, and late aortic-related adverse events.ResultsThe full study cohort included 315 patients with AAD (mean [SD] age, 56.2 [12.7] years; 230 men [73.0%]). Ninety-two patients (29.2%) were positive for AT1-AAs. The mortality of AT1-AA-positive patients was significantly higher than that of AT1-AA-negative patients (40 [43.5%] vs 37 [16.6%]; P < .001). The mortality risk in AT1-AA-positive patients was always significantly higher than that in AT1-AA-negative patients in patients with both type A and type B dissection. Multivariable analysis showed that the risk of AT1-AA-positive patients for type A dissection was significantly higher than that of AT1-AA-negative patients (odds ratio [OR], 1.88; 95% CI, 1.12-3.13; P = .02). The Cox proportional hazards regression model showed a significant increase of all-cause mortality risk (OR, 2.27; 95% CI, 1.44-3.57; P < .001) and late aortic-related adverse events (OR, 1.58; 95% CI, 1.06-2.36; P = .03) among AT1-AA-positive patients during the follow-up period compared with AT1-AA-negative patients.Conclusions and relevanceThis cohort study first detected AT1-AAs in patients with acute aortic dissection. The presence of AT1-AAs was associated with significantly higher all-cause and cause-specific mortality during a follow-up period of 3 years. The antibodies may be a risk factor for aortic dissection.
Project description:Pre-eclampsia affects approximately 5% of pregnancies and remains a leading cause of maternal and neonatal mortality and morbidity in the United States and the world. The clinical hallmarks of this maternal disorder include hypertension, proteinuria, endothelial dysfunction and placental defects. Advanced-stage clinical symptoms include cerebral hemorrhage, renal failure and the HELLP (hemolysis, elevated liver enzymes and low platelets) syndrome. An effective treatment of pre-eclampsia is unavailable owing to the poor understanding of the pathogenesis of the disease. Numerous recent studies have shown that women with pre-eclampsia possess autoantibodies, termed AT(1)-AAs, that bind and activate the angiotensin II receptor type 1a (AT(1) receptor). We show here that key features of pre-eclampsia, including hypertension, proteinuria, glomerular endotheliosis (a classical renal lesion of pre-eclampsia), placental abnormalities and small fetus size appeared in pregnant mice after injection with either total IgG or affinity-purified AT(1)-AAs from women with pre-eclampsia. These features were prevented by co-injection with losartan, an AT(1) receptor antagonist, or by an antibody neutralizing seven-amino-acid epitope peptide. Thus, our studies indicate that pre-eclampsia may be a pregnancy-induced autoimmune disease in which key features of the disease result from autoantibody-induced angiotensin receptor activation. This hypothesis has obvious implications regarding pre-eclampsia screening, diagnosis and therapy.
Project description:BackgroundThe purpose of the study was to determine the relationship between angiotensin II type 1 receptor at position+1166 (AT1R+1166A/C; rs5186) and angiotensin II type 2 receptor at position+1675 (AT2R+1675A/G; rs5194) gene polymorphisms with preeclampsia in an Iranian women population.Methods430 women were recruited in this study including 212 preeclamptics and 218 healthy women. PCR-RFLP method was used for genotyping the polymorphisms. Chi square and Fisher exact test were used for comparing case and control groups. The p<0.05 was considered statistically significant.ResultsThe frequency of genotypes of the AT1R gene and AT2R gene was similar in preeclampsia and normal pregnancy. There were no significant differences in genotype and also allele frequencies between preeclamptics and healthy women regarding the two studied polymorphisms. AT1R/AT2R genotypes combination study indicated that there was a statistically significant difference between preeclamptics and healthy women. AC/AG combination was significantly decreased, while CC/AA combination showed significant increase in patients compared with the healthy women (p<0.01).ConclusionThe present study showed that the genetic polymorphisms within AT1R and AT2R genes may be associated with susceptibility to preeclampsia in Iranian women.
Project description:The role of autoimmunity in neurodegeneration has been increasingly suggested. The renin-angiotensin system (RAS) autoantibodies play a major role in several peripheral inflammatory processes. Dysregulation of brain RAS has been involved in neuroinflammation and neurodegeneration. We aimed to know whether angiotensin type-1 receptor (AT1) autoantibodies (AT1 agonists) and angiotensin-converting enzyme 2 (ACE2) autoantibodies (ACE2 antagonists) may be involved in Parkinson's disease (PD) progression and constitute a new therapeutical target. Both AT1 and ACE2 serum autoantibodies were higher in a group of 117 PD patients than in a group of 106 controls. Serum AT1 autoantibodies correlated with several cytokines, particularly Tumor Necrosis Factor Ligand Superfamily Member 14 (TNFSF14, LIGHT), and 27-hydroxycholesterol levels. Serum ACE2 autoantibodies correlated with AT1 autoantibodies. Both autoantibodies were found in cerebrospinal fluid (CSF) of four PD patients with CSF samples. Consistent with the observations in patients, experimental dopaminergic degeneration, induced by 6-hydroxydopamine, increased levels of autoantibodies in serum and CSF in rats, as well as LIGHT levels and transglutaminase activity in rat substantia nigra. In cultures, administration of AT1 autoantibodies enhanced dopaminergic neuron degeneration and increased levels of neuroinflammation markers, which was inhibited by the AT1 antagonist candesartan. The results suggest dysregulation of RAS autoantibodies as a new mechanism that can contribute to PD progression. Therapeutical strategies blocking the production, or the effects of these autoantibodies may be useful for PD treatment, and the results further support repurposing AT1 blockers (ARBs) as treatment against PD progression.
Project description:Preeclampsia complicates 5-8% of all pregnancies worldwide, and although its pathophysiology remains obscure, placental oxidative stress and mitochondrial abnormalities are considered to play a key role. Mitochondrial abnormalities in preeclamptic placentae have been described, but the extent to which mitochondrial content and the molecular pathways controlling this (mitochondrial biogenesis and mitophagy) are affected in preeclamptic placentae is unknown. Therefore, in preeclamptic (n = 12) and control (n = 11) placentae, we comprehensively assessed multiple indices of placental antioxidant status, mitochondrial content, mitochondrial biogenesis, mitophagy, and mitochondrial fusion and fission. In addition, we also explored gene expression profiles related to inflammation and apoptosis. Preeclamptic placentae were characterized by higher levels of oxidized glutathione, a higher total antioxidant capacity, and higher mRNA levels of the mitochondrial-located antioxidant enzyme manganese-dependent superoxide dismutase 2 compared to controls. Furthermore, mitochondrial content was significantly lower in preeclamptic placentae, which was accompanied by an increased abundance of key constituents of glycolysis. Moreover, mRNA and protein levels of key molecules involved in the regulation of mitochondrial biogenesis were lower in preeclamptic placentae, while the abundance of constituents of the mitophagy, autophagy, and mitochondrial fission machinery was higher compared to controls. In addition, we found evidence for activation of apoptosis and inflammation in preeclamptic placentae. This study is the first to comprehensively demonstrate abnormalities at the level of the mitochondrion and the molecular pathways controlling mitochondrial content/function in preeclamptic placentae. These aberrations may well contribute to the pathophysiology of preeclampsia by upregulating placental inflammation, oxidative stress, and apoptosis. Graphical Abstract.
Project description:Preeclampsia (PE) is a life-threatening hypertensive disorder of pregnancy associated with autoantibodies, termed AT1-AA, that activate the AT1 angiotensin receptor. Although the pathogenic nature of these autoantibodies has been extensively studied, little is known about the molecular cause of their generation.Here we show that tissue transglutaminase (TG2), an enzyme that conducts posttranslational modification of target proteins, directly modified the 7-amino acid (7-aa) epitope peptide that localizes to the second extracellular loop of the AT1 receptor. These findings led us to further discover that plasma transglutaminase activity was induced and contributed to the production of AT1-AA and disease development in an experimental model of PE induced by injection of LIGHT, a tumor necrosis factor superfamily member. Key features of PE were regenerated by adoptive transfer of purified IgG from LIGHT-injected pregnant mice and blocked by the 7-amino acid epitope peptide. Translating our mouse research to humans, we found that plasma transglutaminase activity was significantly elevated in PE patients and was positively correlated with AT1-AA levels and PE features.Overall, we provide compelling mouse and human evidence that elevated transglutaminase underlies AT1-AA production in PE and highlight novel pathogenic biomarkers and innovative therapeutic possibilities for the disease.
Project description:Preeclampsia is a prevalent life-threatening hypertensive disorder of pregnancy for which the pathophysiology remains largely undefined. Recently, a circulating maternal autoantibody, the angiotensin II type I (AT(1)) receptor agonistic autoantibody (AA), has emerged as a contributor to disease features. Increased circulating maternal tumor necrosis factor alpha (TNF-alpha) is also associated with the disease; however, it is unknown whether this factor directly contributes to preeclamptic symptoms. Here we report that this autoantibody increases the proinflammatory cytokine TNF-alpha in the circulation of AT(1)-AA-injected pregnant mice but not in nonpregnant mice. Coinjection of AT(1)-AA with a TNF-alpha neutralizing antibody reduced cytokine availability in AT(1)-AA-injected pregnant mice. Moreover, TNF-alpha blockade in AT(1)-AA-injected pregnant mice significantly attenuated the key features of preeclampsia. Autoantibody-induced hypertension was reduced from 131+/-4 to 110+/-4 mm Hg, and proteinuria was reduced from 212+/-25 to 155+/-23 microg of albumin per milligram of creatinine (both P<0.05). Injection of AT(1)-AA increased the serum levels of circulating soluble fms-like tyrosine kinase 1 and soluble endoglin (34.1+/-5.1, 2.4+/-0.3 ng/mL, respectively) and coinjection with the TNF-alpha blocker significantly reduced their levels (21.7+/-3.4 and 1.2+/-0.4 ng/mL, respectively). Renal damage and placental abnormalities were also decreased by TNF-alpha blockade. Lastly, the elevated circulating TNF-alpha in preeclamptic patients is significantly correlated with the AT(1)-AA bioactivity in our patient cohort. Similarly, the autoantibody, through AT(1) receptor-mediated TNF-alpha induction, contributed to increased soluble fms-like tyrosine kinase 1, soluble endoglin secretion, and increased apoptosis in cultured human villous explants. Overall, AT(1)-AA is a novel candidate that induces TNF-alpha, a cytokine that may play an important pathogenic role in preeclampsia.