Project description:IntroductionGene therapy offers the potential for targeted replacement of single gene defects in inherited retinal degenerations.Areas coveredChoroideremia is an X-linked blinding retinal disease resulting from deficiency of the CHM gene product, REP1. The disease represents an ideal target for retinal gene therapy, as it is readily diagnosed in the clinic, relatively homogenous in phenotype and slow progressing, thereby providing a wide therapeutic window for intervention. Ongoing clinical trials of retinal gene therapy for choroideremia using an adeno-associated viral vector have demonstrated safety and early efficacy. We review the clinical characteristics of the disease with a view to interpreting the findings of gene therapy clinical trials and discuss future directions.Expert commentaryChoroideremia gene therapy has so far demonstrated good safety profile and early functional visual acuity gains in a proportion of trial participants, which appear to be sustained.
Project description:IntroductionChoroideremia is a rare, X-linked disorder recognized by its specific ocular phenotype as a progressive degenerative retinopathy resulting in blindness. New therapeutic approaches, primarily based on genetic mechanisms, have emerged that aim to prevent the progressive vision loss.Areas coveredThis article will review the research that has progressed incrementally over the past two decades from mapping to gene discovery, uncovering the presumed mechanisms triggering the retinopathy to preclinical testing of potential therapies.Expert opinionWhile still in an evaluative phase, the introduction of gene replacement as a potential therapy has been greeted with great enthusiasm by patients, advocacy groups and the medical community.
Project description:Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene.
Project description:Choroideremia (CHM) is an X- linked retinal degeneration that is symptomatic in the 1(st) or 2(nd) decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary for retinal cell health, Rab Escort Protein 1 (REP1).The CHM cDNA can be packaged in recombinant adeno-associated virus (rAAV), which has an established track record in human gene therapy studies, and, in addition, there are sensitive and quantitative assays to document REP1 activity. An animal model that accurately reflects the human condition is not available. In this study, we tested the ability to restore REP1 function in personalized in vitro models of CHM: lymphoblasts and induced pluripotent stems cells (iPSCs) from human patients. The initial step of evaluating safety of the treatment was carried out by evaluating for acute retinal histopathologic effects in normal-sighted mice and no obvious toxicity was identified. Delivery of the CHM cDNA to affected cells restores REP1 enzymatic activity and also restores proper protein trafficking. The gene transfer is efficient and the preliminary safety data are encouraging. These studies pave the way for a human clinical trial of gene therapy for CHM.
Project description:Choroideremia is an X-linked inherited chorioretinal dystrophy leading to blindness by late adulthood. Choroideremia is caused by mutations in the CHM gene which encodes Rab escort protein 1 (REP1), an ubiquitously expressed protein involved in intracellular trafficking and prenylation activity. The exact site of pathogenesis remains unclear but results in degeneration of the photoreceptors, retinal pigment epithelium and choroid. Animal and stem cell models have been used to study the molecular defects in choroideremia and test effectiveness of treatment interventions. Natural history studies of choroideremia have provided additional insight into the clinical phenotype of the condition and prepared the way for clinical trials aiming to investigate the safety and efficacy of suitable therapies. In this review, we provide a summary of the current knowledge on the genetics, pathophysiology, clinical features and therapeutic strategies that might become available for choroideremia in the future, including gene therapy, stem cell treatment and small-molecule drugs with nonsense suppression action.
Project description:Retinal gene therapy is increasingly recognized as a novel molecular intervention that has huge potential in treating common causes of blindness, the majority of which have a genetic aetiology1-5. Choroideremia is a chronic X-linked retinal degeneration that was first described in 18726. It leads to progressive blindness due to deficiency of Rab-escort protein 1 (REP1). We designed an adeno-associated viral vector to express REP1 and assessed it in a gene therapy clinical trial by subretinal injection in 14 patients with choroideremia. The primary endpoint was vision change in treated eyes 2 years after surgery compared to unoperated fellow eyes. Despite complications in two patients, visual acuity improved in the 14 treated eyes over controls (median 4.5 letter gain, versus 1.5 letter loss, P = 0.04), with 6 treated eyes gaining more than one line of vision (>5 letters). The results suggest that retinal gene therapy can sustain and improve visual acuity in a cohort of predominantly late-stage choroideremia patients in whom rapid visual acuity loss would ordinarily be predicted.
Project description:Background and objectives: Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations involving the CHM gene. Gene therapy has entered late-phase clinical trials, although there have been variable results. This review gives a summary on the outcomes of phase I/II CHM gene therapy trials and describes other potential experimental therapies. Materials and Methods: A Medline (National Library of Medicine, Bethesda, MD, USA) search was performed to identify all articles describing gene therapy treatments available for CHM. Results: Five phase I/II clinical trials that reported subretinal injection of adeno-associated virus Rab escort protein 1 (AAV2.REP1) vector in CHM patients were included. The Oxford study (NCT01461213) included 14 patients; a median gain of 5.5 ± 6.8 SD (-6 min, 18 max) early treatment diabetic retinopathy study (ETDRS) letters was reported. The Tubingen study (NCT02671539) included six patients; only one patient had an improvement of 17 ETDRS letters. The Alberta study (NCT02077361) enrolled six patients, and it reported a minimal vision change, except for one patient who gained 15 ETDRS letters. Six patients were enrolled in the Miami trial (NCT02553135), which reported a median gain of 2 ± 4 SD (-1 min, 10 max) ETDRS letters. The Philadelphia study (NCT02341807) included 10 patients; best corrected visual acuity (BCVA) returned to baseline in all by one-year follow-up, but one patient had -17 ETDRS letters from baseline. Overall, 40 patients were enrolled in trials, and 34 had 2 years of follow-up, with a median gain of 1.5 ± 7.2 SD (-14 min, 18 max) in ETDRS letters. Conclusions: The primary endpoint, BCVA following gene therapy in CHM, showed a marginal improvement with variability between trials. Optimizing surgical technique and pre-, peri-, and post-operative management with immunosuppressants to minimize any adverse ocular inflammatory events could lead to reduced incidence of complications. The ideal therapeutic window needs to be addressed to ensure that the necessary cell types are adequately transduced, minimizing viral toxicity, to prolong long-term transgenic potential. Long-term efficacy will be addressed by ongoing studies.
Project description:Choroideremia is an X chromosome-linked retinal dystrophy of unknown pathogenesis. We have isolated cDNAs from a human retinal library with a genomic probe located at the X chromosomal breakpoint in a female with choroideremia and an X;13 translocation. This cDNA spans the breakpoint in the X;13 translocation female and is deleted in males who have choroideremia as part of a complex phenotype including mental retardation and deafness. However, this cDNA detects no alterations in the DNA of 34 males with isolated choroideremia. Nonetheless, the cDNA does detect reduced or absent levels of mRNA in three-quarters of male patients with an apparently intact gene. These data support the hypothesis that this cDNA represents the gene in which mutations cause choroideremia.