Unknown

Dataset Information

0

A Reliable Prediction Model for Renal Cell Carcinoma Subtype Based on Radiomic Features from 3D Multiphase Enhanced CT Images.


ABSTRACT:

Background

This study aimed to develop a prediction model to distinguish renal cell carcinoma (RCC) subtypes.

Methods

The radiomic features (RFs) from 5 different computed tomography (CT) phases were used in the prediction models: noncontrast phase (NCP), corticomedullary phase (CMP), nephrographic phase (NP), excretory phase (EP), and all-phase (ALL-P).

Results

For the ALL-P model, all of the RFs obtained from the 4 single-phase images were combined to 420 RFs. The ALL-P model performed the best of all models, with an accuracy of 0.80; the sensitivity and specificity for clear cell RCC (ccRCC) were 0.85 and 0.83; those for papillary RCC (pRCC) were 0.60 and 0.91; those for chromophobe RCC (cRCC) were 0.66 and 0.91, respectively. Binary classification experiments showed for distinguishing ccRCC vs. not-ccRCC that the area under the receiver operating characteristic curve (AUC) of the ALL-P and CMP models was 0.89, but the overall sensitivity/specificity/accuracy of the ALL-P model was better. For cRCC vs. non-cRCC, the ALL-P model had the best performance.

Conclusions

A reliable prediction model for RCC subtypes was constructed. The performance of the ALL-P prediction model was the best as compared to individual single-phase models and the traditional prediction model.

SUBMITTER: Zhang H 

PROVIDER: S-EPMC8478553 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9047864 | biostudies-literature
| S-EPMC6394783 | biostudies-literature
| S-EPMC8050292 | biostudies-literature
| S-EPMC8477419 | biostudies-literature
| S-EPMC10029938 | biostudies-literature
| S-EPMC9854669 | biostudies-literature
| S-EPMC3203128 | biostudies-other
| S-EPMC6209534 | biostudies-literature
| S-EPMC7925235 | biostudies-literature
| S-EPMC7914329 | biostudies-literature