Project description:AimsSeveral studies suggest that circulating bone marrow derived stem cells promote the regeneration of ischemic tissues. For hematopoietic stem cell transplantation combinatorial granulocyte-colony stimulating factor (G-CSF)/Plerixafor (AMD3100) administration was shown to enhance mobilization of bone marrow derived stem cells compared to G-CSF monotherapy. Here we tested the hypothesis whether combinatorial G-CSF/AMD3100 therapy has beneficial effects in cardiac recovery in a mouse model of myocardial infarction.MethodsWe analyzed the effect of single G-CSF (250 µg/kg/day) and combinatorial G-CSF/AMD3100 (100 µg/kg/day) treatment on cardiac morphology, vascularization, and hemodynamics 28 days after permanent ligation of the left anterior descending artery (LAD). G-CSF treatment started directly after induction of myocardial infarction (MI) for 3 consecutive days followed by a single AMD3100 application on day three after MI in the G-CSF/AMD3100 group. Cell mobilization was assessed by flow cytometry of blood samples drawn from tail vein on day 0, 7, and 14.ResultsPeripheral blood analysis 7 days after MI showed enhanced mobilization of white blood cells (WBC) and endothelial progenitor cells (EPC) upon G-CSF and combinatorial G-CSF/AMD3100 treatment. However, single or combinatorial treatment showed no improvement in survival, left ventricular function, and infarction size compared to the saline treated control group 28 days after MI. Furthermore, no differences in histology and vascularization of infarcted hearts could be observed.ConclusionAlthough the implemented treatment regimen caused no adverse effects, our data show that combinatorial G-CSF/AMD therapy does not promote myocardial regeneration after permanent LAD occlusion.
Project description:Repeated pandemics caused by the influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV) have resulted in serious problems in global public health, emphasizing the need for broad-spectrum antiviral therapeutics against respiratory virus infections. Here, we show the protective effects of long-acting recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc) against major respiratory viruses, including influenza virus, SARS-CoV-2, and respiratory syncytial virus. Administration of rhIL-7-hyFc in a therapeutic or prophylactic regimen induces substantial antiviral effects. During an influenza A virus (IAV) infection, rhIL-7-hyFc treatment increases pulmonary T cells composed of blood-derived interferon γ (IFNγ)+ conventional T cells and locally expanded IL-17A+ innate-like T cells. Single-cell RNA transcriptomics reveals that rhIL-7-hyFc upregulates antiviral genes in pulmonary T cells and induces clonal expansion of type 17 innate-like T cells. rhIL-7-hyFc-mediated disease prevention is dependent on IL-17A in both IAV- and SARS-CoV-2-infected mice. Collectively, we suggest that rhIL-7-hyFc can be used as a broadly active therapeutic for future respiratory virus pandemic.
Project description:BACKGROUND:Endothelial barrier dysfunction characterized by hyperpermeability of the vascular endothelium is a key factor in the pathogenesis of chronic inflammatory diseases and affects clinical outcomes. In states of chronic inflammation, mediators secreted by activated immune cells or vascular endothelium may affect the barrier function and permeability of the vascular endothelium. The matricellular R-spondin family member RSPO3 is produced by inflammatory-activated human monocytes and vascular endothelial cells, but its effects in the regulation of vascular endothelial barrier function remains elusive. METHODS:The present study investigates the effects of RSPO3 on the barrier function of adult human primary macro- and micro- vascular endothelial monolayers. Tight monolayers of primary endothelial cells from human coronary and pulmonary arteries, and cardiac, brain, and dermal microvascular beds were treated with RSPO3 either alone or in combination with pro-inflammatory mediator IL-1?. Endothelial barrier function was assessed non-invasively in real-time using Electric Cell-substrate Impedance Sensing. RESULTS:RSPO3 treatment critically affected barrier function by enhancing the permeability of all vascular endothelial monolayers investigated. To confer hyperpermeable phenotype in vascular endothelial monolayers, RSPO3 induced inter-endothelial gap formation by disrupting the ?-catenin and VE-cadherin alignment at adherens junctions. RSPO3 synergistically enhanced the barrier impairing properties of the pro-inflammatory mediator IL-1?. CONCLUSION:Here, we show that the matricellular protein RSPO3 is a mediator of endothelial hyperpermeability that can act in synergy with the inflammatory mediator IL-1?. This finding stimulates further studies to delineate the endothelial barrier impairing properties of RSPO3 and its synergistic interaction with IL-1? in chronic inflammatory diseases.
Project description:IL-37 is a new member of IL-1 family and possesses five different isoforms (named as IL-37 a-e). IL-37b has been demonstrated as a physiological suppressor of immune responses. However, the function of other isoforms remains unknown. Here, we show that IL-37d possesses anti-inflammatory roles both in vitro and in vivo. Firstly, IL-37d is expressed in peripheral blood mononuclear cells (PBMCs) and umbilical cords-derived mesenchymal stem cells (UCMSCs). Secondly, IL-37d overexpression markedly inhibits IL-1?-induced IL-6 production in A549 cells. Consistently, bone marrow-derived macrophages (BMDMs) from IL-37d transgenic mice express low levels of pro-inflammatory cytokines (such as IL-6 and TNF-?) following LPS stimulation, compared with those from wild-type mice. Furthermore, IL-37d transgenic mice produce less pro-inflammatory cytokines, and show much less degree of LPS-induced endotoxemia in vivo. Mechanistically, IL-37d interacts with Smad3 and promotes nuclear translocation of pSmad3. SIS3 (a specific Smad3 inhibitor) treatment completely blocks the inhibitory effects of IL-37d. Thus, our data indicate that IL-37d is a functional cytokine that negatively regulates pro-inflammatory cytokines expression in a Smad3-dependent manner.
Project description:Neutropenia is a common side effect of cytotoxic chemotherapy and radiation, increasing the risk of infection in these patients. Here we examined the impact of body temperature on neutrophil recovery in the blood and bone marrow after total body irradiation (TBI). Mice were exposed to either 3 or 6 Gy TBI followed by a mild heat treatment that temporarily raised core body temperature to approximately 39.5°C. Neutrophil recovery was then compared with control mice that received either TBI alone heat treatment alone. Mice that received both TBI and heat treatment exhibited a significant increase in the rate of neutrophil recovery in the blood and an increase in the number of marrow hematopoietic stem cells and neutrophil progenitors compared with that seen in mice that received either TBI or heat alone. The combination treatment also increased G-CSF concentrations in the serum, bone marrow, and intestinal tissue and IL-17, IL-1?, and IL-1? concentrations in the intestinal tissue after TBI. Neutralizing G-CSF or inhibiting IL-17 or IL-1 signaling significantly blocked the thermally mediated increase in neutrophil numbers. These findings suggest that a physiologically relevant increase in body temperature can accelerate recovery from neutropenia after TBI through a G-CSF-, IL-17-, and IL-1-dependent mechanism.
Project description:Administration of G-CSF mobilizes a unique population of CD11b+Ly6C+CD34+mature monocytes that can inhibit GVHD in murine models of BMT via an iNOS-dependent mechanism. The transcriptional profiles of flow sorted lineage-CD11b+CD34+ cells from G-CSF treated mice were compared with conventional splenic Ly6C+ and Ly6C- monocytes, progenitor cells and cultured myeloid-derived suppressor cells. Further comparisons were made with lineage-CD11b+CD34+ cells from G-CSF treated mice that had been grown in culture or that were derived from iNOS ko mice. We used microarrays to detail the global programme of gene expression underlying diffrenetiation of each of these cell types Lin-CD11b+CD34+ populations were isolated directly from the spleens of G-CSF-treated C57BL/6 mice or iNOS ko mice. In untreated C57BL/6 mice, Lin-CD11b+CD115+Ly6C+ and Lin-CD11b+CD115+Ly6C- monocytes were isolated from the spleen and Lin-CD117+CD115+CD135-Ly6C+CD11b- common monocyte progenitors were isolated from the bone marrow. Myeloid-derived suppressor cells (Ly6C+CD11b+ cells derived from G-CSF, GM-CSF and IL-13 cultured C57BL/6 bone marrow) were also isolated and compared with the above populations. Lin-CD11b+CD34+ spleen cells derived from G-CSF-treated C57BL/6 mice were cultured for 3 days in Flt3 ligand and SCF and then compared to the original input population.
Project description:Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO-1 independent. Concluding, CoPP increases expression of mobilization-related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.
Project description:Hematopoietic stem-cell gene therapy is a promising treatment of X-linked severe combined immunodeficiency disease (SCID-X1), but currently, it requires recipient conditioning, extensive cell manipulation, and sophisticated facilities. With these limitations in mind, we explored a simpler therapeutic approach to SCID-X1 treatment by direct IV administration of foamy virus (FV) vectors in the canine model. FV vectors were used because they have a favorable integration site profile and are resistant to serum inactivation. Here, we show improved efficacy of our in vivo gene therapy platform by mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 before injection of an optimized FV vector incorporating the human phosphoglycerate kinase enhancerless promoter. G-CSF/AMD3100 mobilization before FV vector delivery accelerated kinetics of CD3+ lymphocyte recovery, promoted thymopoiesis, and increased immune clonal diversity. Gene-corrected T lymphocytes exhibited a normal CD4:CD8 ratio and a broad T-cell receptor repertoire and showed restored γC-dependent signaling function. Treated animals showed normal primary and secondary antibody responses to bacteriophage immunization and evidence for immunoglobulin class switching. These results demonstrate safety and efficacy of an accessible, portable, and translatable platform with no conditioning regimen for the treatment of SCID-X1 and other genetic diseases.
Project description:Depletion of hematopoietic stem cells (HSCs) is used therapeutically in many malignant and nonmalignant blood disorders in the setting of a hematopoietic cell transplantation (HCT) to eradicate diseased HSCs, thus allowing donor HSCs to engraft. Current treatments to eliminate HSCs rely on modalities that cause DNA strand breakage (ie, alkylators, radiation) resulting in multiple short-term and long-term toxicities and sometimes even death. These risks have severely limited the use of HCT to patients with few to no comorbidities and excluded many others with diseases that could be cured with an HCT. 5-Azacytidine (AZA) is a widely used hypomethylating agent that is thought to preferentially target leukemic cells in myeloid malignancies. Here, we reveal a previously unknown effect of AZA on HSCs. We show that AZA induces early HSC proliferation in vivo and exerts a direct cytotoxic effect on proliferating HSCs in vitro. When used to pretreat recipient mice for transplantation, AZA permitted low-level donor HSC engraftment. Moreover, by combining AZA with a monoclonal antibody (mAb) targeting CD117 (c-Kit) (a molecule expressed on HSCs), more robust HSC depletion and substantially higher levels of multilineage donor cell engraftment were achieved in immunocompetent mice. The enhanced effectiveness of this combined regimen correlated with increased apoptotic cell death in hematopoietic stem and progenitor cells. Together, these findings highlight a previously unknown therapeutic mechanism for AZA which may broaden its use in clinical practice. Moreover, the synergy we show between AZA and anti-CD117 mAb is a novel strategy to eradicate abnormal HSCs that can be rapidly tested in the clinical setting.
Project description:Administration of G-CSF mobilizes a unique population of CD11b+Ly6C+CD34+mature monocytes that can inhibit GVHD in murine models of BMT via an iNOS-dependent mechanism. The transcriptional profiles of flow sorted lineage-CD11b+CD34+ cells from G-CSF treated mice were compared with conventional splenic Ly6C+ and Ly6C- monocytes, progenitor cells and cultured myeloid-derived suppressor cells. Further comparisons were made with lineage-CD11b+CD34+ cells from G-CSF treated mice that had been grown in culture or that were derived from iNOS ko mice. We used microarrays to detail the global programme of gene expression underlying diffrenetiation of each of these cell types