Project description:We describe a simple and accurate method, ESE-PM7, for calculating solvation free energies ΔGsolv° in aqueous and nonaqueous solutions. The method is based on a noniterative COSMO algorithm. Molecular geometries and atomic charges calculated using the semiempirical method PM7 are used to calculate ΔGsolv°. The method has been tested on 92 different solvents and 988 solutes. The mean absolute errors (MAEs) in ΔGsolv° in aqueous solutions estimated by the ESE-PM7 approach are found to be 1.62 kcal/mol for 389 neutral solutes and 3.06 kcal/mol for 139 ions. The MAEs for neutral molecules in organic solvents are 0.97, 0.74, and 0.51 kcal/mol in polar protic, polar aprotic, and nonpolar solvents, respectively. The developed method can be employed to quickly screen ΔGsolv° values of extended molecular systems including pharmaceutical and biological molecules.
Project description:The liquid-air surface tension of aqueous solutions is a fundamental quantity in multi-phase thermodynamics and fluid dynamics and thus relevant in many scientific and engineering fields. Various models have been proposed for its quantitative description. This Perspective gives an overview of the most popular models and their ability to reproduce experimental data of ten binary aqueous solutions of electrolytes and organic molecules chosen to be representative of different solute types. In addition, we propose a new model which reproduces sigmoidal curve shapes (Sigmoid model) to empirically fit experimental surface tension data. The surface tension of weakly surface-active substances is well reproduced by all models. In contrast, only few models successfully model the surface tension of aqueous solutions with strongly surface-active substances. For substances with a solubility limit, usually no experimental data is available for the surface tension of supersaturated solutions and the pure liquid solute. We discuss ways in which these can be estimated and emphasize the need for further research. The newly developed Sigmoid model best reproduces the surface tension of all tested solutions and can be recommended as a model for a broad range of binary mixtures and over the entire concentration range.
Project description:The aqueous proton displays an anomalously large diffusion coefficient that is up to 7 times that of similarly sized cations. There is general consensus that the proton achieves its high diffusion through the Grotthuss mechanism, whereby protons hop from one molecule to the next. A main assumption concerning the extraction of the timescale of the Grotthuss mechanism from experimental results has been that, on average, there is an equal probability for the proton to hop to any of its neighboring water molecules. Herein, we present ab initio simulations that show this assumption is not generally valid. Specifically, we observe that there is an increased probability for the proton to revert back to its previous location. These correlations indicate that the interpretation of the experimental results need to be re-examined and suggest that the timescale of the Grotthuss mechanism is significantly shorter than was previously thought.
Project description:The present work describes the study of mercury Hg(II) and lead Pb(II) removal in single and binary component systems into easily prepared chitosan-iron(III) bio-composite beads. Scanning electron microscopy and energy-dispersive X-ray (SEM-EDX) analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and point of zero charge (pHpzc) analysis were carried out. The experimental set covered pH study, single and competitive equilibrium, kinetics, chloride and sulfate effects as well as sorption⁻desorption cycles. In single systems, the Langmuir nonlinear model fitted the experimental data better than the Freundlich and Sips equations. The sorbent material has more affinity to Hg(II) rather than Pb(II) ions, the maximum sorption capacities were 1.8 mmol·g-1 and 0.56 mmol·g-1 for Hg(II) and Pb(II), respectively. The binary systems data were adjusted with competitive Langmuir isotherm model. The presence of sulfate ions in the multicomponent system [Hg(II)-Pb(II)] had a lesser impact on the sorption efficiency than did chloride ions, however, the presence of chloride ions improves the selectivity towards Hg(II) ions. The bio-based material showed good recovery performance of metal ions along three sorption⁻desorption cycles.
Project description:Proton transfer across single-layer graphene proceeds with large computed energy barriers and is therefore thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid-base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energy barriers of 0.61-0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. Unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons.
Project description:Recent experiments with undersaturated aqueous glycine solutions have repeatedly exhibited the presence of giant liquid-like clusters or nanodroplets around 100 nm in diameter. These nanodroplets re-appear even after careful efforts for their removal and purification of the glycine solution. The composition of these clusters is not clear, although it has been suggested that they are mainly composed of glycine, a small and very soluble amino acid. To gain insights into this phenomenon, we study the aggregation of glycine in aqueous solutions at concentrations below the experimental solubility limit using large-scale molecular dynamics simulations under ambient conditions. Three protonation states of glycine (zwitterion = GLZ, anion = GLA, and cation = GLC) are simulated using molecular force fields based on the 1.14*CM1A partial charge scheme, which incorporates the OPLS all-atom force field and TIP3P water. When initiated from dispersed states, we find that giant clusters do not form in our simulations unless salt impurities are present. Moreover, if simulations are initiated from giant cluster states, we find that they tend to dissolve in the absence of salt impurities. Therefore, the simulation results provide little support for the possibility that the giant clusters seen in experiments are composed purely of glycine (and water). Considering that strenuous efforts are made in experiments to remove impurities such as salt, we propose that the giant clusters observed might instead result from the aggregation of reaction products of aqueous glycine, such as diketopiperazine or other oligoglycines which may be difficult to separate from glycine using conventional methods, or their co-aggregation with glycine.
Project description:The dynamics of ions adsorbed at the surface of immersed charged solids plays a central role in countless natural and industrial processes such as crystal growth, heterogeneous catalysis, electrochemistry, or biological function. Electrokinetic measurements typically distinguish between a so-called Stern layer of ions and water molecules directly adsorbed on to the solid's surface, and a diffuse layer of ions further away from the surface. Dynamics within the Stern layer remain poorly understood, largely owing to a lack of in-situ atomic-level insights. Here we follow the dynamics of single Rb+ and H3O+ ions at the surface of mica in water using high-resolution atomic force microscopy with 25?ms resolution. Our results suggest that single hydrated Rb+ions reside ?1?=?104?±?5?ms at a given location, but this is dependent on the hydration state of the surface which evolves on a slower timescale of ?2?=?610?±?30?ms depending on H3O+ adsorption. Increasing the liquid's temperature from 5?°C to 65?°C predictably decreases the apparent glassiness of the interfacial water, but no clear effect on the ions' dynamics was observed, indicating a diffusion-dominated process. These timescales are remarkably slow for individual monovalent ions and could have important implications for interfacial processes in electrolytes.
Project description:Photoacids attract increasing scientific attention, as they are valuable tools to spatiotemporally control proton-release reactions and pH values of solutions. We present the first time-resolved spectroscopic study of the excited state and proton-release dynamics of prominent merocyanine representatives. Femtosecond transient absorption measurements of a pyridine merocyanine with two distinct protonation sites revealed dissimilar proton-release mechanisms: one site acts as a photoacid generator as its pKa value is modulated in the ground state after photoisomerization, while the other functions as an excited state photoacid which releases its proton within 1.1 ps. With a pKa drop of 8.7 units to -5.5 upon excitation, the latter phenolic site is regarded a super-photoacid. The 6-nitro derivative exhibits only a phenolic site with similar, yet slightly less photoacidic characteristics and both compounds transfer their proton to methanol and ethanol. In contrast, for the related 6,8-dinitro compound an intramolecular proton transfer to the ortho-nitro group is suggested that is involved in a rapid relaxation into the ground state.
Project description:It is generally accepted that the anomalous diffusion of the aqueous hydroxide ion results from its ability to accept a proton from a neighboring water molecule; yet, many questions exist concerning the mechanism for this process. What is the solvation structure of the hydroxide ion? In what way do water hydrogen bond dynamics influence the transfer of a proton to the ion? We present the results of femtosecond pump-probe and 2D infrared experiments that probe the O-H stretching vibration of a solution of dilute HOD dissolved in NaOD/D(2)O. Upon the addition of NaOD, measured pump-probe transients and 2D IR spectra show a new feature that decays with a 110-fs time scale. The calculation of 2D IR spectra from an empirical valence bond molecular dynamics simulation of a single NaOH molecule in a bath of H(2)O indicates that this fast feature is due to an overtone transition of Zundel-like H(3)O(2)(-) states, wherein a proton is significantly shared between a water molecule and the hydroxide ion. Given the frequency of vibration of shared protons, the observations indicate the shared proton state persists for 2-3 vibrational periods before the proton localizes on a hydroxide. Calculations based on the EVB-MD model argue that the collective electric field in the proton transfer direction is the appropriate coordinate to describe the creation and relaxation of these Zundel-like transition states.
Project description:In this article, we have investigated the excited-state intramolecular double proton transfer dynamics of [2,2'-bipyridyl]-3,3'-diol, BP(OH)2, in three alcohol-water binary mixtures, namely, ethanol (EtOH)-water, n-propanol (PrOH)-water, tert-butyl alcohol (TBA)-water, and dimethyl sulfoxide (DMSO)-water utilizing the femtosecond fluorescence upconversion technique. We have found that in alcohol-water binary mixtures the proton transfer (PT) pathway of BP(OH)2 is sequential and the anomalous slowdown in PT dynamics is observed in mole fraction (χ) ranges χEtOH = 0.04-0.07, χEtOH = 0.23-0.28, χPrOH = 0.17-0.30, χTBA = 0.12-0.21, and χTBA = 0.40-0.46. Our study sheds light on the involvement of water network in the PT dynamics. Reduction in water accessibility due to the involvement of water molecules in cluster formation results in hindered PT dynamics, and this retardation is more for the TBA-water binary mixture compared to that for the other two mixtures. Additionally, we have found two anomalous regions for the DMSO-water binary mixture in ranges χDMSO = 0.12-0.16 and χDMSO = 0.26-0.34. However, most interestingly, beyond χDMSO = 0.40, we do not find any growth component in the femtosecond fluorescence upconversion trace, which may be due to the change in the PT mechanism from a sequential water-mediated pathway to a concerted intramolecular pathway.