Project description:We have developed GFam, a platform for automatic annotation of gene/protein families. GFam provides a framework for genome initiatives and model organism resources to build domain-based families, derive meaningful functional labels and offers a seamless approach to propagate functional annotation across periodic genome updates. GFam is a hybrid approach that uses a greedy algorithm to chain component domains from InterPro annotation provided by its 12 member resources followed by a sequence-based connected component analysis of un-annotated sequence regions to derive consensus domain architecture for each sequence and subsequently generate families based on common architectures. Our integrated approach increases sequence coverage by 7.2 percentage points and residue coverage by 14.6 percentage points higher than the coverage relative to the best single-constituent database within InterPro for the proteome of Arabidopsis. The true power of GFam lies in maximizing annotation provided by the different InterPro data sources that offer resource-specific coverage for different regions of a sequence. GFam's capability to capture higher sequence and residue coverage can be useful for genome annotation, comparative genomics and functional studies. GFam is a general-purpose software and can be used for any collection of protein sequences. The software is open source and can be obtained from http://www.paccanarolab.org/software/gfam/.
Project description:Backgroundlarge scale and reliable proteins' functional annotation is a major challenge in modern biology. Phylogenetic analyses have been shown to be important for such tasks. However, up to now, phylogenetic annotation did not take into account expression data (i.e. ESTs, Microarrays, SAGE, ...). Therefore, integrating such data, like ESTs in phylogenetic annotation could be a major advance in post genomic analyses. We developed an approach enabling the combination of expression data and phylogenetic analysis. To illustrate our method, we used an example protein family, the peptidyl arginine deiminases (PADs), probably implied in Rheumatoid Arthritis.Resultsthe analysis was performed as follows: we built a phylogeny of PAD proteins from the NCBI's NR protein database. We completed the phylogenetic reconstruction of PADs using an enlarged sequence database containing translations of ESTs contigs. We then extracted all corresponding expression data contained in EST database This analysis allowed us 1/To extend the spectrum of homologs-containing species and to improve the reconstruction of genes' evolutionary history. 2/To deduce an accurate gene expression pattern for each member of this protein family. 3/To show a correlation between paralogous sequences' evolution rate and pattern of tissular expression.Conclusioncoupling phylogenetic reconstruction and expression data is a promising way of analysis that could be applied to all multigenic families to investigate the relationship between molecular and transcriptional evolution and to improve functional annotation.
Project description:Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations.
Project description:BackgroundSemantic role labeling (SRL) is an important text analysis technique. In SRL, sentences are represented by one or more predicate-argument structures (PAS). Each PAS is composed of a predicate (verb) and several arguments (noun phrases, adverbial phrases, etc.) with different semantic roles, including main arguments (agent or patient) as well as adjunct arguments (time, manner, or location). PropBank is the most widely used PAS corpus and annotation format in the newswire domain. In the biomedical field, however, more detailed and restrictive PAS annotation formats such as PASBio are popular. Unfortunately, due to the lack of an annotated PASBio corpus, no publicly available machine-learning (ML) based SRL systems based on PASBio have been developed. In previous work, we constructed a biomedical corpus based on the PropBank standard called BioProp, on which we developed an ML-based SRL system, BIOSMILE. In this paper, we aim to build a system to convert BIOSMILE's BioProp annotation output to PASBio annotation. Our system consists of BIOSMILE in combination with a BioProp-PASBio rule-based converter, and an additional semi-automatic rule generator.ResultsOur first experiment evaluated our rule-based converter's performance independently from BIOSMILE performance. The converter achieved an F-score of 85.29%. The second experiment evaluated combined system (BIOSMILE + rule-based converter). The system achieved an F-score of 69.08% for PASBio's 29 verbs.ConclusionOur approach allows PAS conversion between BioProp and PASBio annotation using BIOSMILE alongside our newly developed semi-automatic rule generator and rule-based converter. Our system can match the performance of other state-of-the-art domain-specific ML-based SRL systems and can be easily customized for PASBio application development.
Project description:With the development of ultra-high-throughput technologies, the cost of sequencing bacterial genomes has been vastly reduced. As more genomes are sequenced, less time can be spent manually annotating those genomes, resulting in an increased reliance on automatic annotation pipelines. However, automatic pipelines can produce inaccurate genome annotation and their results often require manual curation. Here, we discuss the automatic and manual annotation of bacterial genomes, identify common problems introduced by the current genome annotation process and suggests potential solutions.
Project description:Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of annotated image data has been steadily reduced due to methods such as data augmentation, the process of manual or semi-automated data annotation is the most labor and cost intensive task in the process of cell nuclei segmentation with deep neural networks. In this work we propose a system to fully automate the annotation process of a custom fluorescent cell nuclei image dataset. By that we are able to reduce nuclei labelling time by up to 99.5%. The output of our system provides high quality training data for machine learning applications to identify the position of cell nuclei in microscopy images. Our experiments have shown that the automatically annotated dataset provides coequal segmentation performance compared to manual data annotation. In addition, we show that our system enables a single workflow from raw data input to desired nuclei segmentation and tracking results without relying on pre-trained models or third-party training datasets for neural networks.
Project description:BackgroundA prime objective in metagenomics is to classify DNA sequence fragments into taxonomic units. It usually requires several stages: read's quality control, de novo assembly, contig annotation, gene prediction, etc. These stages need very efficient programs because of the number of reads from the projects. Furthermore, the complexity of metagenomes requires efficient and automatic tools that orchestrate the different stages.MethodDATMA is a pipeline for fast metagenomic analysis that orchestrates the following: sequencing quality control, 16S rRNA-identification, reads binning, de novo assembly and evaluation, gene prediction, and taxonomic annotation. Its distributed computing model can use multiple computing resources to reduce the analysis time.ResultsWe used a controlled experiment to show DATMA functionality. Two pre-annotated metagenomes to compare its accuracy and speed against other metagenomic frameworks. Then, with DATMA we recovered a draft genome of a novel Anaerolineaceae from a biosolid metagenome.ConclusionsDATMA is a bioinformatics tool that automatically analyzes complex metagenomes. It is faster than similar tools and, in some cases, it can extract genomes that the other tools do not. DATMA is freely available at https://github.com/andvides/DATMA.
Project description:BackgroundThe ENCODE gene prediction workshop (EGASP) has been organized to evaluate how well state-of-the-art automatic gene finding methods are able to reproduce the manual and experimental gene annotation of the human genome. We have used Softberry gene finding software to predict genes, pseudogenes and promoters in 44 selected ENCODE sequences representing approximately 1% (30 Mb) of the human genome. Predictions of gene finding programs were evaluated in terms of their ability to reproduce the ENCODE-HAVANA annotation.ResultsThe Fgenesh++ gene prediction pipeline can identify 91% of coding nucleotides with a specificity of 90%. Our automatic pseudogene finder (PSF program) found 90% of the manually annotated pseudogenes and some new ones. The Fprom promoter prediction program identifies 80% of TATA promoters sequences with one false positive prediction per 2,000 base-pairs (bp) and 50% of TATA-less promoters with one false positive prediction per 650 bp. It can be used to identify transcription start sites upstream of annotated coding parts of genes found by gene prediction software.ConclusionWe review our software and underlying methods for identifying these three important structural and functional genome components and discuss the accuracy of predictions, recent advances and open problems in annotating genomic sequences. We have demonstrated that our methods can be effectively used for initial automatic annotation of the eukaryotic genome.
Project description:Automatic medical image segmentation plays a critical role in scientific research and medical care. Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, we introduce Annotation-effIcient Deep lEarning (AIDE), an open-source framework to handle imperfect training datasets. Methodological analyses and empirical evaluations are conducted, and we demonstrate that AIDE surpasses conventional fully-supervised models by presenting better performance on open datasets possessing scarce or noisy annotations. We further test AIDE in a real-life case study for breast tumor segmentation. Three datasets containing 11,852 breast images from three medical centers are employed, and AIDE, utilizing 10% training annotations, consistently produces segmentation maps comparable to those generated by fully-supervised counterparts or provided by independent radiologists. The 10-fold enhanced efficiency in utilizing expert labels has the potential to promote a wide range of biomedical applications.
Project description:BackgroundLiterature-based gene ontology (GO) annotation is a process where expert curators use uniform expressions to describe gene functions reported in research papers, creating computable representations of information about biological systems. Manual assurance of consistency between GO annotations and the associated evidence texts identified by expert curators is reliable but time-consuming, and is infeasible in the context of rapidly growing biological literature. A key challenge is maintaining consistency of existing GO annotations as new studies are published and the GO vocabulary is updated.ResultsIn this work, we introduce a formalisation of biological database annotation inconsistencies, identifying four distinct types of inconsistency. We propose a novel and efficient method using state-of-the-art text mining models to automatically distinguish between consistent GO annotation and the different types of inconsistent GO annotation. We evaluate this method using a synthetic dataset generated by directed manipulation of instances in an existing corpus, BC4GO. We provide detailed error analysis for demonstrating that the method achieves high precision on more confident predictions.ConclusionsTwo models built using our method for distinct annotation consistency identification tasks achieved high precision and were robust to updates in the GO vocabulary. Our approach demonstrates clear value for human-in-the-loop curation scenarios.