Unknown

Dataset Information

0

Modified Bose-Einstein condensation in an optical quantum gas.


ABSTRACT: Open quantum systems can be systematically controlled by making changes to their environment. A well-known example is the spontaneous radiative decay of an electronically excited emitter, such as an atom or a molecule, which is significantly influenced by the feedback from the emitter's environment, for example, by the presence of reflecting surfaces. A prerequisite for a deliberate control of an open quantum system is to reveal the physical mechanisms that determine its state. Here, we investigate the Bose-Einstein condensation of a photonic Bose gas in an environment with controlled dissipation and feedback. Our measurements offer a highly systematic picture of Bose-Einstein condensation under non-equilibrium conditions. We show that by adjusting their frequency Bose-Einstein condensates naturally try to avoid particle loss and destructive interference in their environment. In this way our experiments reveal physical mechanisms involved in the formation of a Bose-Einstein condensate, which typically remain hidden when the system is close to thermal equilibrium.

SUBMITTER: Vretenar M 

PROVIDER: S-EPMC8484613 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9217748 | biostudies-literature
| S-EPMC10006222 | biostudies-literature
| S-EPMC8585877 | biostudies-literature
| S-EPMC3324982 | biostudies-literature
| S-EPMC7720211 | biostudies-literature
| S-EPMC7456097 | biostudies-literature
| S-EPMC7673702 | biostudies-literature
| S-EPMC4262886 | biostudies-literature
| S-EPMC9544320 | biostudies-literature
| S-EPMC6376030 | biostudies-literature