Project description:BackgroundPremature discontinuation and other forms of noncompliance with treatment assignment can complicate causal inference of treatment effects in randomized trials. The intent-to-treat analysis gives unbiased estimates for causal effects of treatment assignment on outcome, but may understate potential benefit or harm of actual treatment. The corresponding upper confidence limit can also be underestimated.PurposeTo compare estimates of the hazard ratio and upper bound of the two-sided 95% confidence interval from causal inference methods that account for noncompliance with those from the intent-to-treat analysis.MethodsWe used simulations with parameters chosen to reflect cardiovascular safety trials of diabetes drugs, with a focus on upper bound estimates relative to 1.3, based on regulatory guidelines. A total of 1000 simulations were run under each parameter combination for a hypothetical trial of 10,000 total subjects randomly assigned to active treatment or control at 1:1 ratio. Noncompliance was considered in the form of treatment discontinuation and cross-over at specified proportions, with an assumed true hazard ratio of 0.9, 1, and 1.3, respectively. Various levels of risk associated with being a non-complier (independent of treatment status) were evaluated. Hazard ratio and upper bound estimates from causal survival analysis and intent-to-treat were obtained from each simulation and summarized under each parameter setting.ResultsCausal analysis estimated the true hazard ratio with little bias in almost all settings examined. Intent-to-treat was unbiased only when the true hazard ratio = 1; otherwise it underestimated both benefit and harm. When upper bound estimates from intent-to-treat were ≥1.3, corresponding estimates from causal analysis were also ≥1.3 in almost 100% of the simulations, regardless of the true hazard ratio. When upper bound estimates from intent-to-treat were <1.3 and the true hazard ratio = 1, corresponding upper bound estimates from causal analysis were ≥1.3 in up to 66% of the simulations under some settings.LimitationsSimulations cannot cover all scenarios for noncompliance in real randomized trials.ConclusionCausal survival analysis was superior to intent-to-treat in estimating the true hazard ratio with respect to bias in the presence of noncompliance. However, its large variance should be considered for safety upper bound exclusion especially when the true hazard ratio = 1. Our simulations provided a broad reference for practical considerations of bias-variance trade-off in dealing with noncompliance in cardiovascular safety trials of diabetes drugs. Further research is warranted for the development and application of causal inference methods in the evaluation of safety upper bounds.
Project description:Truncation occurs in cohort studies with complex sampling schemes. When truncation is ignored or incorrectly assumed to be independent of the event time in the observable region, bias can result. We derive completely nonparametric bounds for the survivor function under truncation and censoring; these extend prior nonparametric bounds derived in the absence of truncation. We also define a hazard ratio function that links the unobservable region in which event time is less than truncation time, to the observable region in which event time is greater than truncation time, under dependent truncation. When this function can be bounded, and the probability of truncation is known approximately, it yields narrower bounds than the purely nonparametric bounds. Importantly, our approach targets the true marginal survivor function over its entire support, and is not restricted to the observable region, unlike alternative estimators. We evaluate the methods in simulations and in clinical applications.
Project description:We propose a Bayesian non-parametric (BNP) framework for estimating causal effects of mediation, the natural direct, and indirect, effects. The strategy is to do this in two parts. Part 1 is a flexible model (using BNP) for the observed data distribution. Part 2 is a set of uncheckable assumptions with sensitivity parameters that in conjunction with Part 1 allows identification and estimation of the causal parameters and allows for uncertainty about these assumptions via priors on the sensitivity parameters. For Part 1, we specify a Dirichlet process mixture of multivariate normals as a prior on the joint distribution of the outcome, mediator, and covariates. This approach allows us to obtain a (simple) closed form of each marginal distribution. For Part 2, we consider two sets of assumptions: (a) the standard sequential ignorability (Imai et al., 2010) and (b) weakened set of the conditional independence type assumptions introduced in Daniels et al. (2012) and propose sensitivity analyses for both. We use this approach to assess mediation in a physical activity promotion trial.
Project description:Recently, in genetic epidemiology, Mendelian randomization (MR) has become a popular approach to estimate causal exposure effects by using single nucleotide polymorphisms from genome-wide association studies (GWAS) as instruments. The most popular type of MR study, a two-sample summary-data MR study, relies on having summary statistics from two independent GWAS and using parametric methods for estimation. However, little is understood about using a nonparametric bound-based analysis, a popular approach in traditional instrumental variables frameworks, to study causal effects in two-sample MR. In this article, we explore using a nonparametric, bound-based analysis in two-sample MR studies, focusing primarily on implications for practice. We also propose a framework to assess how likely one can obtain more informative bounds if we used a different MR design, notably a one-sample MR design. We conclude by demonstrating our findings through two real data analyses concerning the causal effect of smoking on lung cancer and the causal effect of high cholesterol on heart attacks. Overall, our results suggest that while a bound-based analysis may be appealing due to its nonparametric nature, it is far more conservative in two-sample settings than in one-sample settings to get informative bounds on the causal exposure effect.
Project description:In this article, we first study parameter identifiability in randomized clinical trials with noncompliance and missing outcomes. We show that under certain conditions the parameters of interest are identifiable even under different types of completely nonignorable missing data: that is, the missing mechanism depends on the outcome. We then derive their maximum likelihood and moment estimators and evaluate their finite-sample properties in simulation studies in terms of bias, efficiency, and robustness. Our sensitivity analysis shows that the assumed nonignorable missing-data model has an important impact on the estimated complier average causal effect (CACE) parameter. Our new method provides some new and useful alternative nonignorable missing-data models over the existing latent ignorable model, which guarantees parameter identifiability, for estimating the CACE in a randomized clinical trial with noncompliance and missing data.
Project description:Pilot phases of a randomized clinical trial often suggest that a parametric model may be an accurate description of the trial's longitudinal trajectories. However, parametric models are often not used for fear that they may invalidate tests of null hypotheses of equality between the experimental groups. Existing work has shown that when, for some types of data, certain parametric models are used, the validity for testing the null is preserved even if the parametric models are incorrect. Here, we provide a broader and easier to check characterization of parametric models that can be used to (i) preserve nonparametric validity of testing the null hypothesis, i.e., even when the models are incorrect, and (ii) increase power compared to the non- or semiparametric bounds when the models are close to correct. We demonstrate our results in a clinical trial of depression in Alzheimer's patients.
Project description:Estimation of treatment effects in randomized studies is often hampered by possible selection bias induced by conditioning on or adjusting for a variable measured post-randomization. One approach to obviate such selection bias is to consider inference about treatment effects within principal strata, that is, principal effects. A challenge with this approach is that without strong assumptions principal effects are not identifiable from the observable data. In settings where such assumptions are dubious, identifiable large sample bounds may be the preferred target of inference. In practice these bounds may be wide and not particularly informative. In this work we consider whether bounds on principal effects can be improved by adjusting for a categorical baseline covariate. Adjusted bounds are considered which are shown to never be wider than the unadjusted bounds. Necessary and sufficient conditions are given for which the adjusted bounds will be sharper (i.e., narrower) than the unadjusted bounds. The methods are illustrated using data from a recent, large study of interventions to prevent mother-to-child transmission of HIV through breastfeeding. Using a baseline covariate indicating low birth weight, the estimated adjusted bounds for the principal effect of interest are 63% narrower than the estimated unadjusted bounds.
Project description:BACKGROUND:The importance of randomization in clinical trials has long been acknowledged for avoiding selection bias. Yet, bias concerns re-emerge with selective attrition. This study takes a causal inference perspective in addressing distinct scenarios of missing outcome data (MCAR, MAR and MNAR). METHODS:This study adopts a causal inference perspective in providing an overview of empirical strategies to estimate the average treatment effect, improve precision of the estimator, and to test whether the underlying identifying assumptions hold. We propose to use Random Forest Lee Bounds (RFLB) to address selective attrition and to obtain more precise average treatment effect intervals. RESULTS:When assuming MCAR or MAR, the often untenable identifying assumptions with respect to causal inference can hardly be verified empirically. Instead, missing outcome data in clinical trials should be considered as potentially non-random unobserved events (i.e. MNAR). Using simulated attrition data, we show how average treatment effect intervals can be tightened considerably using RFLB, by exploiting both continuous and discrete attrition predictor variables. CONCLUSIONS:Bounding approaches should be used to acknowledge selective attrition in randomized clinical trials in acknowledging the resulting uncertainty with respect to causal inference. As such, Random Forest Lee Bounds estimates are more informative than point estimates obtained assuming MCAR or MAR.