Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Project description:ImportanceSome individuals who were infected by the SARS-CoV-2 Omicron variant may have been completely unaware of their infectious status while the virus was actively transmissible.ObjectiveTo examine awareness of infectious status among individuals during the recent Omicron variant surge in a diverse and populous urban region of Los Angeles County.Design, setting, and participantsThis cohort study analyzed the records of adult employees and patients of an academic medical center who were enrolled in a longitudinal COVID-19 serological study in Los Angeles County, California. These participants had 2 or more serial anti-nucleocapsid IgG (IgG-N) antibody measurements at least 1 month apart, with the first occurring after the end of a regional Delta variant surge (September 15, 2021) and a subsequent one occurring after the start of a regional Omicron variant surge (December 15, 2021). Adults with evidence of new SARS-CoV-2 infection occurring during the Omicron variant surge period through May 4, 2022, were included in the present study sample.ExposuresRecent Omicron variant infection as evidenced by SARS-CoV-2 seroconversion.Main outcomes and measuresAwareness of recent SARS-CoV-2 infection was ascertained from review of self-reported health updates, medical records, and COVID-19 testing data.ResultsOf the 210 participants (median [range] age, 51 (23-84) years; 136 women [65%]) with serological evidence of recent Omicron variant infection, 44% (92) demonstrated awareness of any recent Omicron variant infection and 56% (118) reported being unaware of their infectious status. Among those who were unaware, 10% (12 of 118) reported having had any symptoms, which they attributed to a common cold or other non-SARS-CoV-2 infection. In multivariable analyses that accounted for demographic and clinical characteristics, participants who were health care employees of the medical center were more likely than nonemployees to be aware of their recent Omicron variant infection (adjusted odds ratio, 2.46; 95% CI, 1.30-4.65).Conclusions and relevanceResults of this study suggest that more than half of adults with recent Omicron variant infection were unaware of their infectious status and that awareness was higher among health care employees than nonemployees, yet still low overall. Unawareness may be a highly prevalent factor associated with rapid person-to-person transmission within communities.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:ObjectiveNeutralizing antibodies are among the factors used to measure an individual's immune status for the control of infectious diseases. We aimed to confirm the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody levels in patients who had recovered from coronavirus disease 2019 (COVID-19).MethodsPlasma donors in South Korea who had completely recovered from SARS-CoV-2 infection had follow-up testing to determine the persistence of neutralizing antibodies using a plaque-reduction neutralization test and ELISA.ResultsOf the 111 participants-aged 20-29 years, 37/111 (33.3%); 30-39 years, 17/111 (15.3%); 40-49 years, 23/111 (20.7%); 50-59 years, 21/111 (18.9%); 60-65 years, 13/111 (11.7%); male, 43/111 (38.7%); female, 68/111 (61.3%)-66.1% still had neutralizing antibodies approximately 9 months (range 255-302 days) after confirmation of the diagnosis.ConclusionsIn this study we analysed the titre of neutralizing antibodies associated with predicting immune status in individuals with natural infection. Information about the persistence and change in levels of neutralizing antibodies against SARS-CoV-2 can be utilized to provide evidence for developing vaccination schedules for individuals with previous infection.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate or quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-ddORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV. Time Points = 0, 24, 48, 60, 72, 84 and 96 hrs post-infection forSARS-ddORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate/quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate for RNA Triplicates are defined as 3 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2 for SARS viruses and an MOI of 1 for H1N1.
Project description:BackgroundWhether young adults who are infected with SARS-CoV-2 are at risk of subsequent infection is uncertain. We investigated the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection.MethodsThis analysis was performed as part of the prospective COVID-19 Health Action Response for Marines study (CHARM). CHARM included predominantly male US Marine recruits, aged 18-20 years, following a 2-week unsupervised quarantine at home. After the home quarantine period, upon arrival at a Marine-supervised 2-week quarantine facility (college campus or hotel), participants were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA. Participants also completed a questionnaire consisting of demographic information, risk factors, reporting of 14 specific COVID-19-related symptoms or any other unspecified symptom, and brief medical history. SARS-CoV-2 infection was assessed by PCR at weeks 0, 1, and 2 of quarantine and participants completed a follow-up questionnaire, which included questions about the same COVID-19-related symptoms since the last study visit. Participants were excluded at this stage if they had a positive PCR test during quarantine. Participants who had three negative swab PCR results during quarantine and a baseline serum serology test at the beginning of the supervised quarantine that identified them as seronegative or seropositive for SARS-CoV-2 then went on to basic training at Marine Corps Recruit Depot-Parris Island. Three PCR tests were done at weeks 2, 4, and 6 in both seropositive and seronegative groups, along with the follow-up symptom questionnaire and baseline neutralising antibody titres on all subsequently infected seropositive and selected seropositive uninfected participants (prospective study period).FindingsBetween May 11, 2020, and Nov 2, 2020, we enrolled 3249 participants, of whom 3168 (98%) continued into the 2-week quarantine period. 3076 (95%) participants, 2825 (92%) of whom were men, were then followed up during the prospective study period after quarantine for 6 weeks. Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year). In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year). The incidence rate ratio was 0·18 (95% CI 0·11-0·28; p<0·001). Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0·45 [95% CI 0·32-0·65]; p<0·001). Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants (ORF1ab gene cycle threshold difference 3·95 [95% CI 1·23-6·67]; p=0·004). Among seropositive participants, baseline neutralising titres were detected in 45 (83%) of 54 uninfected and in six (32%) of 19 infected participants during the 6 weeks of observation (ID50 difference p<0·0001).InterpretationSeropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralisation activity or immunity against subsequent infection. These findings might be relevant for optimisation of mass vaccination strategies.FundingDefense Health Agency and Defense Advanced Research Projects Agency.