Project description:The development of thrombotic events is common among patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). We studied the influence of pathogenic mutations frequently associated with myeloid malignancies on thrombotic events using next-generation sequencing (NGS) in an initial cohort of 68 patients with myeloproliferative neoplasms (MPN). As expected, the presence of mutations in DNMT3A, TET2, and ASXL1 (DTA genes) was positively associated with age for the whole cohort (p = 0.025, OR: 1.047, 95% CI: 1.006-1.090). Also, while not related with events in the whole cohort, DTA mutations were strongly associated with the development of vascular events in PV patients (p = 0.028). To confirm the possible association between the presence of DTA mutation and thrombotic events, we performed a case-control study on 55 age-matched patients with PV (including 12 PV patients from the initial cohort, 25 with event vs. 30 no event). In the age-matched case-control PV cohort, the presence of ?1 DTA mutation significantly increased the risk of a thrombotic event (OR: 6.333, p = 0.0024). Specifically, mutations in TET2 were associated with thrombotic events in the PV case-control cohort (OR: 3.56, 95% CI: 1.15-11.83, p = 0.031). Our results suggest that pathogenic DTA mutations, and particularly TET2 mutations, may be an independent risk factor for thrombosis in patients with PV. However, the predictive value of TET2 and DTA mutations in ET and PMF was inconclusive and should be determined in a larger cohort.
Project description:We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A) and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM). SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS) was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04) and sole TET2 mutations (P<0.001). In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.
Project description:Molecular measurable residual disease (MRD) assessment is not established in approximately 60% of acute myeloid leukemia (AML) patients because of the lack of suitable markers for quantitative real-time polymerase chain reaction. To overcome this limitation, we established an error-corrected next-generation sequencing (NGS) MRD approach that can be applied to any somatic gene mutation. The clinical significance of this approach was evaluated in 116 AML patients undergoing allogeneic hematopoietic cell transplantation (alloHCT) in complete morphologic remission (CR). Targeted resequencing at the time of diagnosis identified a suitable mutation in 93% of the patients, covering 24 different genes. MRD was measured in CR samples from peripheral blood or bone marrow before alloHCT and identified 12 patients with persistence of an ancestral clone (variant allele frequency [VAF] >5%). The remaining 96 patients formed the final cohort of which 45% were MRD+ (median VAF, 0.33%; range, 0.016%-4.91%). In competing risk analysis, cumulative incidence of relapse (CIR) was higher in MRD+ than in MRD- patients (hazard ratio [HR], 5.58; P < .001; 5-year CIR, 66% vs 17%), whereas nonrelapse mortality was not significantly different (HR, 0.60; P = .47). In multivariate analysis, MRD positivity was an independent negative predictor of CIR (HR, 5.68; P < .001), in addition to FLT3-ITD and NPM1 mutation status at the time of diagnosis, and of overall survival (HR, 3.0; P = .004), in addition to conditioning regimen and TP53 and KRAS mutation status. In conclusion, NGS-based MRD is widely applicable to AML patients, is highly predictive of relapse and survival, and may help refine transplantation and posttransplantation management in AML patients.
Project description:WT1 overexpression is frequently identified in acute myeloid leukemia (AML) and has been reported to be a potential marker for monitoring measurable residual disease (MRD). We evaluated the use of postinduction WT1 MRD level as a prognostic factor, as well as the interaction between postinduction WT1 MRD response and the effect of allogeneic stem cell transplantation (allo-SCT) in the first complete remission (CR). In the ALFA-0702 trial, patients with AML, aged 18 to 59, had a prospective quantification of WT1 MRD. The occurrence of a WT1 MRD ratio >2.5% in bone marrow or >0.5% in peripheral blood was defined as MRDhigh, and ratios below these thresholds were defined as MRDlow. The prognostic value of MRD after induction chemotherapy was assessed in 314 patients in first CR by comparing the risk of relapse, the relapse-free survival (RFS), and the overall survival (OS). Interaction between MRD response and the allo-SCT effect was evaluated in patients by comparing the influence of allo-SCT on the outcomes of patients with MRDhigh with those with MRDlow. The results showed that patients with MRDhigh after induction had a higher risk of relapse and a shorter RFS and OS. The MRD response remained of strong prognostic value in the subset of 225 patients with intermediate-/unfavorable-risk AML who were eligible for allo-SCT, because patients with MRDhigh had a significantly higher risk of relapse resulting in worse RFS and OS. The effect of allo-SCT was higher in patients with MRDlow than in those with MRDhigh, but not significantly different. The early WT1 MRD response highlights a population of high-risk patients in need of additional therapy.
Project description:Allogeneic stem cell transplantation plays a central role in the management of fit adults with high-risk acute myeloid leukemia (AML) in first complete morphologic remission (CR1). Advances in both donor selection and transplant technology have both dramatically increased accessibility of transplant and led to significant reductions in transplant-related mortality over the past 2 decades. There has, however, been no concomitant reduction in the risk of disease relapse, which remains the major cause of transplant failure. Pivotal to the design of innovative strategies with the potential to reduce relapse risk is accurate identification of patients at the highest risk of disease recurrence. Multiple retrospective studies have identified an increased risk of disease relapse in patients allografted for AML in CR1 with evidence of pretransplant measurable residual disease (MRD). The prognostic significance of pretransplant MRD has been confirmed recently in prospective analyses. The optimal management of patients with evidence of pretransplant MRD remains a matter of conjecture with regard to 2 key issues. First, should the presence of pretransplant MRD delay a decision to proceed to transplant, allowing time for delivery of additional MRD-directed therapy prior to transplant? Second, to what extent can the intensity of the conditioning regimen or the magnitude of the graft-vs-leukemia effect be manipulated to improve the outcome of such patients?
Project description:Mutations involving epigenetic regulators (TET2~60% and ASXL1~40%) and splicing components (SRSF2~50%) are frequent in chronic myelomonocytic leukemia (CMML). On a 27-gene targeted capture panel performed on 175 CMML patients (66% males, median age 70 years), common mutations included: TET2 46%, ASXL1 47%, SRSF2 45% and SETBP1 19%. A total of 172 (98%) patients had at least one mutation, 21 (12%) had 2, 24 (14%) had 3 and 30 (17%) had >3 mutations. In a univariate analysis, the presence of ASXL1 mutations (P=0.02) and the absence of TET2 mutations (P=0.03), adversely impacted survival; while the number of concurrent mutations had no impact (P=0.3). In a multivariable analysis that included hemoglobin, platelet count, absolute monocyte count and circulating immature myeloid cells (Mayo model), the presence of ASXL1 mutations (P=0.01) and absence of TET2 mutations (P=0.003) retained prognostic significance. Patients were stratified into four categories: ASXL1wt/TET2wt (n=56), ASXL1mut/TET2wt (n=31), ASXL1mut/TET2mut (n=50) and ASXL1wt/TET2mut (n=38). Survival data demonstrated a significant difference in favor of ASXL1wt/TET2mut (38 months; P=0.016), compared with those with ASXL1wt/TET2wt (19 months), ASXL1mut/TET2wt (21 months) and ASXL1mut/TET2mut (16 months) (P=0.3). We confirm the negative prognostic impact imparted by ASXL1 mutations and suggest a favorable impact from TET2 mutations in the absence of ASXL1 mutations.
Project description:In non-promyelocytic (non-M3) AML measurable residual disease (MRD) detected by multi-parameter flow cytometry and molecular technologies, which are guided by Consensus-based guidelines and discover very low leukemic cell numbers far below the 5% threshold of morphological assessment, has emerged as the most relevant predictor of clinical outcome. Currently, it is well-established that MRD positivity after standard induction and consolidation chemotherapy, as well as during the period preceding an allogeneic hematopoietic stem cell transplant (allo-HSCT), portends to a significantly inferior relapse-free survival (RFS) and overall survival (OS). In addition, it has become absolutely clear that conversion from an MRD-positive to an MRD-negative state provides a favorable clinical outcome similar to that associated with early MRD negativity. Thus, the complete eradication of MRD, i.e., the clearance of the few leukemic stem cells-which, due to their chemo-radiotherapy resistance, might eventually be responsible of disease recurrence-has become an un-met clinical need in AML. Nowadays, this goal might potentially be achieved thanks to the development of novel innovative treatment strategies, including those targeting driver mutations, apoptosis, methylation patterns and leukemic proteins. The aim of this review is to analyze these strategies and to suggest any potential combination able to induce MRD negativity in the pre- and post-HSCT period.
Project description:Allogeneic hematopoietic cell transplantation (HCT) is often unsuccessful for monosomal karyotype (MK) acute myeloid leukemia (AML). To what degree failures are associated with pretransplant measurable residual disease (MRD)-a dominant adverse-risk factor-is unknown. We therefore studied 606 adults with intermediate- or adverse-risk AML in morphologic remission who underwent allogeneic HCT between 4/2006 and 1/2019. Sixty-eight (11%) patients had MK AML, the majority of whom with complex cytogenetics. Before HCT, MK AML patients more often tested MRDpos by multiparameter flow cytometry (49 vs. 18%; P?<?0.001) and more likely had persistent cytogenetic abnormalities (44 vs. 13%; P?<?0.001) than non-MK AML patients. Three-year relapse/overall survival estimates were 46%/43% and 72%/15% for MRDneg and MRDpos MK AML patients, respectively, contrasted to 20%/64% and 64%/38% for MRDneg and MRDpos non-MK AML patients, respectively. After multivariable adjustment, MRDpos remission status but not MK remained statistically significantly associated with shorter survival and higher relapse risk. Similar results were obtained in several patient subsets. In summary, while our study confirms higher relapse rates and shorter survival for MK-AML compared with non-MK AML patients, these outcomes are largely accounted for by the presence of other adverse prognostic factors, in particular higher likelihood of pre-HCT MRD.
Project description:For most patients with acute myeloid leukemia (AML) harboring a trisomy 8 an allogeneic hematopoietic stem cell transplantation (HSCT) is a suitable and recommended consolidation therapy. However, comparative outcome analyses between patients with and without trisomy 8 undergoing allogeneic HSCT have not been performed so far. We retrospectively analyzed clinical features, outcomes, and measurable residual disease (MRD) of 659 AML (12%, n = 81, with a trisomy 8) patients subjected to allogeneic HSCT as a consolidation therapy. The presence of a trisomy 8 associated with a trend for higher age at diagnosis, AML of secondary origin, lower white blood cell counts at diagnosis, worse ELN2017 genetic risk, wild-type NPM1, and mutated IDH1/2 and JAK2. Outcomes after allogeneic HSCT in the entire cohort did not differ between patients with a sole trisomy 8, trisomy 8 with additional cytogenetic aberrations or without a trisomy 8. A trisomy 8 did not affect outcomes within the three ELN2017 risk groups. In accordance with findings in unselected patient cohorts, persistent MRD at allogeneic HSCT in patients with a trisomy 8 identified individuals with a higher risk of relapse following allogeneic HSCT. Outcomes of trisomy 8 patients after allogeneic HSCT did not compare unfavorably to that of other AML patients following allogeneic HSCT. Rather than the presence or absence of a trisomy 8, additional genetic aberrations and MRD at HSCT define outcome differences and aid in informed treatment decisions.