Ontology highlight
ABSTRACT: Objectives
Fibrosis is the major cause of chronic kidney injury and the primary etiology in diabetic glomerulosclerosis. The initial study of protein hydrolysate of green peas hydrolyzed by bromelain (PHGPB) considered it to improve kidney function parameters and showed no fibrosis in histopathology features in gentamicin-induced nephrotoxicity rats. In the current study, we aimed to assess the nutrition profile and potency of RGD in PHGPB as antifibrosis in chronic kidney disease (CKD).Materials and methods
Green peas (Pisum sativum) were hydrolyzed by bromelain from pineapple juice to obtain PHGPB. The amino acid content of PHGPB was measured using the UPLC method, while the primary structure used LC-MS/MS. Bioinformatic analysis was conducted using the Protease Specificity Predictive Server (PROSPER). The potency of RGD in PHGPB was characterized by determining the levels of Fibronectin (FN) and TGF-β1 in mesangial SV40 MES 13 cell lines of diabetic glomerulosclerosis.Results
The level of lysine was 364.85 mg/l. The LC-MS/MS data showed two proteins with 4-15 kDa molecular weight originated from convicilin (P13915 and P13919) which were predicted by PROSPER proteolytic cleavage, resulted in RGD in the LERGDT sequence peptide. PHGPB increased SV40 MES 13 mesangial cell proliferation that died from high-glucose levels (diabetic glomerulosclerosis model). PHGPB and RGD reduced the levels of FN and TGF-β1 in mesangial cell lines of diabetic glomerulosclerosis.Conclusion
The nutrition profile and RGD motif in PHGPB show great potential as antifibrosis in CKD.
SUBMITTER: Hidayat M
PROVIDER: S-EPMC8487609 | biostudies-literature |
REPOSITORIES: biostudies-literature