Project description:Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.
Project description:The glomerular filtration barrier (GFB) produces primary urine and is composed of a fenestrated endothelium, a glomerular basement membrane (GBM), podocytes, and a slit diaphragm. Impairment of the GFB leads to albuminuria and microhematuria. The GBM is generated via secreted proteins from both endothelial cells and podocytes and is supposed to majorly contribute to filtration selectivity. While genetic mutations or variations of GBM components have been recently proposed to be a common cause of glomerular diseases, pathways modifying and stabilizing the GBM remain incompletely understood. Here, we identified prolyl 3-hydroxylase 2 (P3H2) as a regulator of the GBM in an a cohort of patients with albuminuria. P3H2 hydroxylates the 3' of prolines in collagen IV subchains in the endoplasmic reticulum. Characterization of a P3h2ΔPod mouse line revealed that the absence of P3H2 protein in podocytes induced a thin basement membrane nephropathy (TBMN) phenotype with a thinner GBM than that in WT mice and the development of microhematuria and microalbuminuria over time. Mechanistically, differential quantitative proteomics of the GBM identified a significant decrease in the abundance of collagen IV subchains and their interaction partners in P3h2ΔPod mice. To our knowledge, P3H2 protein is the first identified GBM modifier, and loss or mutation of P3H2 causes TBMN and focal segmental glomerulosclerosis in mice and humans.
Project description:Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.
Project description:Lysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2. Is LH2 involved in the helical Lys hydroxylation? 3. What are the functional consequences when LH2 is completely absent? To answer these questions, we generated LH2-null MC3T3 cells (LH2KO), and extensively characterized the type I collagen phenotypes in comparison with controls. Cross-link analysis demonstrated that the hydroxylysine-aldehyde (Hylald)-derived cross-links were completely absent from LH2KO collagen with concomitant increases in the Lysald-derived cross-links. Mass spectrometric analysis revealed that, in LH2KO type I collagen, telopeptidyl Lys hydroxylation was completely abolished at all sites while helical Lys hydroxylation was slightly diminished in a site-specific manner. Moreover, di-glycosylated Hyl was diminished at the expense of mono-glycosylated Hyl. LH2KO collagen was highly soluble and digestible, fibril diameters were diminished, and mineralization impaired when compared to controls. Together, these data underscore the critical role of LH2-catalyzed collagen modifications in collagen stability, organization and mineralization in MC3T3 cells.
Project description:Lysyl hydroxylases catalyze hydroxylation of collagen lysines, and sustain essential roles in extracellular matrix (ECM) maturation and remodeling. Malfunctions in these enzymes cause severe connective tissue disorders. Human lysyl hydroxylase 3 (LH3/PLOD3) bears multiple enzymatic activities, as it catalyzes collagen lysine hydroxylation and also their subsequent glycosylation. Our understanding of LH3 functions is currently hampered by lack of molecular structure information. Here, we present high resolution crystal structures of full-length human LH3 in complex with cofactors and donor substrates. The elongated homodimeric LH3 architecture shows two distinct catalytic sites at the N- and C-terminal boundaries of each monomer, separated by an accessory domain. The glycosyltransferase domain displays distinguishing features compared to other known glycosyltransferases. Known disease-related mutations map in close proximity to the catalytic sites. Collectively, our results provide a structural framework characterizing the multiple functions of LH3, and the molecular mechanisms of collagen-related diseases involving human lysyl hydroxylases.
Project description:Collagens, the most abundant proteins in animals, are modified by hydroxylation of proline and lysine residues and by glycosylation of hydroxylysine. Dedicated prolyl hydroxylase, lysyl hydroxylase, and collagen glycosyltransferase enzymes localized in the endoplasmic reticulum mediate these modifications prior to the formation of the collagen triple helix. Whereas collagen-like proteins have been described in some fungi, bacteria, and viruses, the post-translational machinery modifying collagens has never been described outside of animals. We demonstrate that the L230 open reading frame of the giant virus Acanthamoeba polyphaga mimivirus encodes an enzyme that has distinct lysyl hydroxylase and collagen glycosyltransferase domains. We show that mimivirus L230 is capable of hydroxylating lysine and glycosylating the resulting hydroxylysine residues in a native mimivirus collagen acceptor substrate. Whereas in animals from sponges to humans the transfer of galactose to hydroxylysine in collagen is conserved, the mimivirus L230 enzyme transfers glucose to hydroxylysine, thereby defining a novel type of collagen glycosylation in nature. The presence of hydroxylysine in mimivirus proteins was confirmed by amino acid analysis of mimivirus recovered from A. polyphaga cultures. This work shows for the first time that collagen post-translational modifications are not confined to the domains of life. The utilization of glucose instead of the galactose found throughout animals as well as a bifunctional enzyme rather than two separate enzymes may represent a parallel evolutionary track in collagen biology. These results suggest that giant viruses may have contributed to the evolution of collagen biology.
Project description:Abdominal aortic aneurysm (AAA) is a complex disease which is incompletely accounted for. Basement membrane (BM) Collagen IV (COL4A1/A2) is abundant in the artery wall, and several lines of evidence indicate a protective role of baseline COL4A1/A2 in AAA development. Using Col4a1/a2 hemizygous knockout mice (Col4a1/a2+/-, 129Svj background) we show that partial Col4a1/a2 deficiency augmented AAA formation. Although unchallenged aortas were morphometrically and biomechanically unaffected by genotype, explorative proteomic analyses of aortas revealed a clear reduction in BM components and contractile vascular smooth muscle cell (VSMC) proteins, suggesting a central effect of the BM in maintaining VSMCs in the contractile phenotype. These findings were translated to human arteries by showing that COL4A1/A2 correlated to BM proteins and VSMC markers in non-lesioned internal mammary arteries obtained from coronary artery bypass procedures. Moreover, in human AAA tissue, MYH11 (VSMC marker) was depleted in areas of reduced COL4 as assessed by immunohistochemistry. Finally, circulating COL4A1 degradation fragments correlated with AAA progression in the largest Danish AAA cohort, suggesting COL4A1/A2 proteolysis to be an important feature of AAA formation. In sum, we identify COL4A1/A2 as a critical regulator of VSMC phenotype and a protective factor in AAA formation.
Project description:Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.
Project description:Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl(-) ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl(-) in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl(-) and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains.
Project description:Collagen lysyl hydroxylases (LH1-3) are Fe2+- and 2-oxoglutarate (2-OG)-dependent oxygenases that maintain extracellular matrix homeostasis. High LH2 levels cause stable collagen cross-link accumulations that promote fibrosis and cancer progression. However, developing LH antagonists will require structural insights. Here, we report a 2 Å crystal structure and X-ray scattering on dimer assemblies for the LH domain of L230 in Acanthamoeba polyphaga mimivirus. Loop residues in the double-stranded β-helix core generate a tail-to-tail dimer. A stabilizing hydrophobic leucine locks into an aromatic tyrosine-pocket on the opposite subunit. An active site triad coordinates Fe2+. The two active sites flank a deep surface cleft that suggest dimerization creates a collagen-binding site. Loss of Fe2+-binding disrupts the dimer. Dimer disruption and charge reversal in the cleft increase Km and reduce LH activity. Ectopic L230 expression in tumors promotes collagen cross-linking and metastasis. These insights suggest inhibitor targets for fibrosis and cancer.