Project description:BACKGROUND:Managed, feral and wild populations of European honey bee subspecies, Apis mellifera, are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor, that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera, is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. METHODS:Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. RESULTS:Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. DISCUSSION:Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor, we suggest learning more from nature, i.e., identifying the obviously efficient mechanisms favored by natural selection.
Project description:Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera, globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor, DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor-transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health.
Project description:Chemosensing is a primary sense in nature, however little is known about its mechanism in Chelicerata. As a model organism we used the mite Varroa destructor, a key parasite of honeybees. Here we describe a transcriptomic analysis of two physiological stages for the Varroa foreleg, the site of primary olfactory organ. The transcriptomic analysis revealed transcripts of chemosensory related genes belonging to several groups. These include Niemann-Pick disease protein, type C2 (NPC2), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant binding proteins (OBP). However, no insect odorant receptors (ORs) and odorant co-receptors (ORcos) were found. In addition, we identified a homolog of the most ancient IR co-receptor, IR25a, in Varroa as well as in other members of Acari. High expression of this transcript in the mite's forelegs, while not detectable in the other pairs of legs, suggests a function for this IR25a-like in Varroa chemosensing.
Project description:BACKGROUND:The parasite Varroa destructor represents a significant threat to honeybee colonies. Indeed, development of Varroa infestation within colonies, if left untreated, often leads to the death of the colony. Although its impact on bees has been extensively studied, less is known about its biology and the functional processes governing its adult life cycle and adaptation to its host. We therefore developed a full life cycle transcriptomic catalogue in adult Varroa females and included pairwise comparisons with males, artificially-reared and non-reproducing females (10 life cycle stages and conditions in total). RESULTS:Extensive remodeling of the Varroa transcriptome was observed, with an upregulation of energetic and chitin metabolic processes during the initial and final phases of the life cycle (e.g. phoretic and post-oviposition stages), whereas during reproductive stages in brood cells genes showing functions related to transcriptional regulation were overexpressed. Several neurotransmitter and neuropeptide receptors involved in behavioural regulation, as well as active compounds of salivary glands, were also expressed at a higher level outside the reproductive stages. No difference was detected between artificially-reared phoretic females and their counterparts in colonies, or between females who failed to reproduce and females who successfully reproduced, indicating that phoretic individuals can be reared outside host colonies without impacting their physiology and that mechanisms underlying reproductive failure occur before oogenesis. CONCLUSIONS:We discuss how these new findings reveal the remarkable adaptation of Varroa to its host biology and notably to the switch from living on adults to reproducing in sealed brood cells. By spanning the entire adult life cycle, our work captures the dynamic changes in the parasite gene expression and serves as a unique resource for deciphering Varroa biology and identifying new targets for mite control.
Project description:We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed.
Project description:Honey bee (Apis mellifera) gene expression related to immunity for hymenoptaecin (AmHym) and defensin-1 (AmDef-1), longevity for vitellogenin (AmVit2) and stem cell proliferation for poly U binding factor 68 kDa (AmPuf68) was compared following Varroa destructor parasitism, buffer injection and injection of V. destructor compounds in its homogenate. In adults, V. destructor parasitism decreased expression of all four genes, while buffer injection decreased expression of AmHym, AmPuf68 and AmVit2, and homogenate injection decreased expression of AmPuf68 and AmVit2 but increased expression of AmDef-1 relative to their respective controls. The effect of V. destructor parasitism in adults relative to the controls was not significantly different from buffer injection for AmHym and AmVit2 expression, and it was not significantly different from homogenate injection for AmPuf68 and AmVit2. In brood, V. destructor parasitism, buffer injection and homogenate injection decreased AmVit2 expression, whereas AmHym expression was decreased by V. destructor parasitism but increased by buffer and homogenate injection relative to the controls. The effect of varroa parasitism in brood was not significantly different from buffer or homogenate injection for AmPuf68 and AmVit2. Expression levels of the four genes did not correlate with detectable viral levels in either brood or adults. The results of this study indicate that the relative effects of V. destructor parasitism on honey bee gene expression are also shared with other types of stresses. Therefore, some of the effects of V. destructor on honey bees may be mostly due to wounding and injection of foreign compounds into the hemolymph of the bee during parasitism. Although both brood and adults are naturally parasitized by V. destructor, their gene expression responded differently, probably the result of different mechanisms of host responses during development.
Project description:Experiment was designed to study the effect of Deformed wing virus (DWV) and the mite Varroa destructor on global gene expression using microarray transcriptional profiling in developing worker honeybee (Apis mellifera). Newly hatched bee larvae (day 3 of bee development) were transferred from a Varroa-free colony with low DWV levels to a Varroa-infested colony with high levels of DWV in bees and Varroa mites. All transferred larvae were receiving the DWV strains present in this Varroa-infested colony with the food delivered by the nurse bees until their capping (day 8). About half of these larvae were capped with Varroa mite and were subjected to the mite piercing and feeding on their haemolymph during pupal development until sampling at purple eye stage (day 14). Exposure to the mite piercing and feeding resulted in about 1000-fold increase of the DWV levels in the majority of the mite-exposed pupae compared to the control pupae and the pupae not exposed to Varroa mites.
Project description:Varroa mites (Varroa destructor) are parasitic mites that, combined with other factors, are contributing to high levels of honey bee (Apis mellifera) colony losses. A Varroa-active dsRNA was recently developed to control Varroa mites within honey bee brood cells. This dsRNA has 372 base pairs that are homologous to a sequence region within the Varroa mite calmodulin gene (cam). The Varroa-active dsRNA also shares a 21-base pair match with monarch butterfly (Danaus plexippus) calmodulin mRNA, raising the possibility of non-target effects if there is environmental exposure. We chronically exposed the entire monarch larval stage to common (Asclepias syriaca) and tropical (Asclepias curassavica) milkweed leaves treated with concentrations of Varroa-active dsRNA that are one- and ten-fold higher than those used to treat honey bee hives. This corresponded to concentrations of 0.025-0.041 and 0.211-0.282 mg/g leaf, respectively. Potassium arsenate and a previously designed monarch-active dsRNA with a 100% base pair match to the monarch v-ATPase A mRNA (leaf concentration was 0.020-0.034 mg/g) were used as positive controls. The Varroa mite and monarch-active dsRNA's did not cause significant differences in larval mortality, larval or pupal development, pupal weights, or adult eclosion rates when compared to negative controls. Irrespective of control or dsRNA treatment, larvae that consumed approximately 7500 to 10,500-mg milkweed leaf within 10 to 12 days had the highest pupal weights. The lack of mortality and sublethal effects following dietary exposure to dsRNA with 21-base pair and 100% base pair match to mRNAs that correspond to regulatory genes suggest monarch mRNA may be refractory to silencing by dsRNA or monarch dsRNase may degrade dsRNA to a concentration that is insufficient to silence mRNA signaling.
Project description:Social immunity forms an essential part of the defence repertoire of social insects. In response to infestation by the parasitic mite Varroa destructor and its associated viruses, honey bees (Apis mellifera L.) have developed a specific behaviour (varroa-sensitive hygiene, or VSH) that helps protect the colony from this parasite. Brood cells heavily infested with mites are uncapped, the brood killed, and the cell contents removed. For this extreme sacrifice to be beneficial to the colony, the targeting of parasitized brood for removal must be accurate and selective. Here we show that varroa-infested brood produce uniquely identifiable cues that could be used by VSH-performing bees to identify with high specificity which brood cells to sacrifice. This selective elimination of mite-infested brood is a disease resistance strategy analogous to programmed cell death, where young bees likely to be highly dysfunctional as adults are sacrificed for the greater good of the colony.
Project description:Honey bees play important roles in pollination for many crops and wild plants, but have been facing great threats posed by various pathogens and parasites. Among them, Varroa destructor, an obligate ectoparasite of honey bees, is considered the most damaging. Within the last century, V. destructor shifted from the original host, the Asian honey bee Apis cerana to the new host, the European honey bee A. mellifera. However, the reproduction of Varroa mites, especially of different haplotypes in the two hosts, is still largely unknown. In this study, we first investigated the existing Varroa haplotypes in local colonies in southern China, and then compared the reproduction of different haplotypes on the worker brood of both the original and new hosts by artificial inoculation. We confirmed that there are two haplotypes of V. destructor in southern China, one is the Korea haplotype and the other is the China haplotype, and the two types parasitized different honey bee species. Although Varroa females from A. mellifera (Korea haplotype) are able to reproduce on the worker brood of both honey bee species, they showed better reproductive performance in the new host A. mellifera with significantly higher fecundity (number of offspring per mother mite) and reproductive rate (number of adult daughters per mother mite), suggesting that this parasite gains higher fitness after host shift. The data further showed that a short stay of Varroa females inside the A. cerana worker cells decreased their fecundity and especially the reproductive rate in a time-dependent manner, suggesting that the A. cerana worker cells may inhibit Varroa reproduction. In contrast, Varroa mites derived from A. cerana colonies (China haplotype) were entirely sterile in A. mellifera worker cells during two sequential inoculations, while the control mites from A. mellifera colonies (Korea haplotype) reproduced normally. In addition, all the infertile mites were found to defecate on the abdomen of bee pupae. We have revealed that two haplotypes of V. destructor exhibit differential reproduction on the worker brood of the original and new host honey bees, providing novel insights into the diversity and complexity of the reproduction of V. destructor.