Project description:BackgroundBrain perivascular spaces (PVS) are part of the glymphatic system and facilitate clearance of metabolic byproducts. Since enlarged PVS are associated with vascular health, we tested whether intensive systolic blood pressure (SBP) treatment affects PVS structure.MethodsThis is a secondary analysis of the Systolic PRessure INTervention (SPRINT) Trial MRI Substudy: a randomized trial of intensive SBP treatment to goal < 120 mm Hg vs. < 140 mm Hg. Participants had increased cardiovascular risk, pre-treatment SBP 130-180, and no clinical stroke, dementia, or diabetes. Brain MRIs acquired at baseline and follow-up were used to automatically segment PVS in the supratentorial white matter and basal ganglia using a Frangi filtering method. PVS volumes were quantified as a fraction of the total tissue volume. The effects of SBP treatment group and major antihypertensive classes on PVS volume fraction were separately tested using linear mixed-effects models while covarying for MRI site, age, sex, black race, baseline SBP, history of cardiovascular disease (CVD), chronic kidney disease, and white matter hyperintensities (WMH).ResultsFor 610 participants with sufficient quality MRI at baseline (mean age 67±8, 40% female, 32% black), greater PVS volume fraction was associated with older age, male sex, non-Black race, concurrent CVD, WMH, and brain atrophy. For 381 participants with MRI at baseline and at follow-up (median = 3.9 years), intensive treatment was associated with decreased PVS volume fraction relative to standard treatment (interaction coefficient: -0.029 [-0.055 to -0.0029] p=0.029). Reduced PVS volume fraction was also associated with exposure to calcium channel blockers (CCB) and diuretics.ConclusionsIntensive SBP lowering partially reverses PVS enlargement. The effects of CCB use suggests that improved vascular compliance may be partly responsible. Improved vascular health may facilitate glymphatic clearance. Clincaltrials.gov : NCT01206062.
Project description:The perivascular space (PVS) surrounds cerebral blood vessels and plays an important role in clearing waste products from the brain. Their anatomy and function have been described for arteries, but PVS around veins remain poorly characterized. Using in vivo 2-photon imaging in mice, we determined the size of the PVS around arteries and veins, and their connection with the subarachnoid space. After infusion of 70 kD FITC-dextran into the cerebrospinal fluid via the cisterna magna, labeled PVS were evident around arteries, but veins showed less frequent labeling of the PVS. The size of the PVS correlated with blood vessel size for both pial arteries and veins, but not for penetrating vessels. The PVS around pial arteries and veins was separated from the subarachnoid space by a thin meningeal layer, which did not form a barrier for the tracer. In vivo, FITC-dextran signal was observed adjacent to the vessel wall, but minimally within the wall itself. Post-mortem, there was a significant shift in the tracer's location within the arterial wall, extending into the smooth muscle layer. Taken together, these findings suggest that the PVS around veins has a limited role in the exchange of solutes between CSF and brain parenchyma.
Project description:Background and aimsEnlarged perivascular spaces (also known as Virchow-Robin spaces) on T2-weighted brain magnetic resonance imaging are common, but their etiology, and specificity to small vessel as opposed to general cerebrovascular disease or ageing, is unclear. We tested the association between enlarged perivascular spaces and ischemic stroke subtype, other markers of small vessel disease, and common vascular risk factors.MethodsWe prospectively recruited patients with acute stroke, diagnosed and subtyped by a stroke physician using clinical features and brain magnetic resonance imaging. A neuroradiologist rated basal ganglia and centrum semiovale enlarged perivascular spaces on a five-point scale, white matter lesions, recent and old infarcts, and cerebral atrophy. We assessed associations between basal ganglia-, centrum semiovale- and total (combined basal ganglia and centrum semiovale) enlarged perivascular spaces, stroke subtype, white matter lesions, atrophy, and vascular risk factors.ResultsAmong 298 patients (mean age 68 years), after adjusting for vascular risk factors and white matter lesions, basal ganglia-enlarged perivascular spaces were associated with increasing age (P = 0.001), centrum semiovale-enlarged perivascular spaces (P < 0.001), cerebral atrophy (P = 0.03), and lacunar stroke subtype (P = 0.04). Centrum semiovale-enlarged perivascular spaces were associated mainly with basal ganglia-enlarged perivascular spaces. Total enlarged perivascular spaces were associated with increasing age (P = 0.01), deep white matter lesions (P = 0.005), and previous stroke (P = 0.006).ConclusionsEnlarged perivascular spaces are associated with age, lacunar stroke subtype and white matter lesions and should be considered as another magnetic resonance imaging marker of cerebral small vessel disease. Further evaluation of enlarged perivascular spaces in studies of ageing, stroke, and dementia is needed to determine their pathophysiological importance.
Project description:Perivascular spaces, also known as Virchow-Robin spaces, are usually considered as a normal, asymptomatic finding. However, this finding can occasionally demonstrate an atypical appearance and can be symptomatic. We report herein a rare case of cognitive impairment associated with extremely enlarged perivascular spaces. A 68-year-old Japanese woman visited our hospital with a 1-year history of progressive memory impairment. In addition to temporal disorientation and short-term memory impairment, neuropsychological testing showed frontal lobe-related symptoms such as slowed thinking processes, reduced verbal fluency, attention deficit, and reduced working memory. Magnetic resonance imaging of the brain showed widespread enlarged perivascular spaces almost symmetrically in the subcortical white matter of bilateral hemispheres, prominently in bilateral insulas, and frontal opercula. On 99mTc-ethyl cysteinate dimer single photon emission computed tomography, hypoperfusion was apparent in bilateral insulas and frontal opercula where enlarged periventricular spaces were prominent, whereas cerebral perfusion was preserved in areas where enlargement of perivascular spaces was mild or absent. Because symptoms were consistent with the distribution of the enlarged perivascular spaces and hypoperfusion in the brain, cognitive impairment due to enlarged perivascular spaces was diagnosed. Clinicians should note enlarged perivascular spaces as a potential cause of neurological deficits including cognitive impairment.
Project description:BackgroundBrain perivascular spaces (PVS) are part of the glymphatic system and facilitate clearance of metabolic byproducts. Since enlarged PVS are associated with vascular health, we tested whether intensive systolic blood pressure (SBP) treatment affects PVS structure.MethodsThis is a secondary analysis of the Systolic PRessure INtervention Trial (SPRINT) MRI Substudy: a randomized trial of intensive SBP treatment to goal < 120 mm Hg vs < 140 mm Hg. Participants had increased cardiovascular risk, pre-treatment SBP 130-180, and no clinical stroke, dementia, or diabetes. Brain MRIs acquired at baseline and follow-up were used to automatically segment PVS in the supratentorial white matter and basal ganglia using a Frangi filtering method. PVS volumes were quantified as a fraction of the total tissue volume. The effects of SBP treatment group and major antihypertensive classes on PVS volume fraction were separately tested using linear mixed-effects models while covarying for MRI site, age, sex, Black race, baseline SBP, history of cardiovascular disease (CVD), chronic kidney disease, and white matter hyperintensities (WMH).ResultsFor 610 participants with sufficient quality MRI at baseline (mean age 67 ± 8, 40 % female, 32 % Black), greater PVS volume fraction was associated with older age, male sex, non-Black race, concurrent CVD, WMH, and brain atrophy. For 381 participants with MRI at baseline and at follow-up (median ± IQR = 3.9 ± 0.4 years), intensive treatment was associated with decreased PVS volume fraction relative to standard treatment (interaction coefficient: -0.029 [-0.055 to -0.0029] p = 0.029). Reduced PVS volume fraction was also associated with exposure to calcium channel blockers (CCB).ConclusionsPVS enlargement was partially reversed in the intensive SBP treatment group. The association with CCB use suggests that improved vascular compliance may be partly responsible. Improved vascular health may facilitate glymphatic clearance. Clincaltrials.gov: NCT01206062.
Project description:BackgroundPerivascular spaces on brain magnetic resonance imaging (MRI) may indicate poor fluid drainage in the brain and have been associated with numerous neurological conditions. Cerebrovascular reactivity (CVR) is a marker of cerebrovascular function and represents the ability of cerebral blood vessels to regulate cerebral blood flow in response to vasodilatory or vasoconstrictive stimuli. We aimed to examine whether pathological widening of the perivascular space in older adults may be associated with deficits in CVR.MethodsIndependently living older adults free of dementia or clinical stroke were recruited from the community and underwent brain MRI. Pseudo-continuous arterial spin labeling MRI quantified whole brain cerebral perfusion at rest and during CVR to hypercapnia and hypocapnia induced by visually guided breathing exercises. Perivascular spaces were visually scored using existing scales.ResultsThirty-seven independently living older adults (mean age = 66.3 years; SD = 6.8; age range 55-84 years; 29.7% male) were included in the current analysis. Multiple linear regression analysis revealed a significant negative association between burden of perivascular spaces and global CVR to hypercapnia (B = -2.0, 95% CI (-3.6, -0.4), p = .015), adjusting for age and sex. Perivascular spaces were not related to CVR to hypocapnia.DiscussionPerivascular spaces are associated with deficits in cerebrovascular vasodilatory response, but not vasoconstrictive response. Enlargement of perivascular spaces could contribute to, or be influenced by, deficits in CVR. Additional longitudinal studies are warranted to improve our understanding of the relationship between cerebrovascular function and perivascular space enlargement.
Project description:Perivascular Spaces (PVS) are a feature of Small Vessel Disease (SVD), and are an important part of the brain's circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS from MRI. We used ordered logit models and visual rating scales as alternative ground truth for Frangi filter parameter optimization and evaluation. We optimized and validated our proposed models on two independent cohorts, a dementia sample (N?=?20) and patients who previously had mild to moderate stroke (N?=?48). Results demonstrate the robustness and generalisability of our segmentation method. Segmentation-based PVS burden estimates correlated well with neuroradiological assessments (Spearman's ??=?0.74, p?<?0.001), supporting the potential of our proposed method.
Project description:Perivascular space (PVS) is a crevice between two slices of cerebral pia maters, filled with tissue fluid, which be formed by pia mater emboling in the surrounding of cerebral perforating branch (excluding micrangium). Normal PVS (diameter < 2 mm) can be found in almost all healthy adults; however enlarged PVS (diameter > 2 mm) has correlation with neurological disorders probably. The article reviews the formation mechanism, imageology characteristics and the relation with neurological disorders of PVS, which is beneficial to the research of some neurological disorders etiopathogenesis and treatment.
Project description:Diffusion within the extracellular and perivascular spaces of the brain plays an important role in biological processes, therapeutic delivery, and clearance mechanisms within the central nervous system. Recently, ultrasound has been used to enhance the dispersion of locally administered molecules and particles within the brain, but ultrasound-mediated effects on the brain parenchyma remain poorly understood. We combined an electron microscopy-based ultrastructural analysis with high-resolution tracking of non-adhesive nanoparticles in order to probe changes in the extracellular and perivascular spaces of the brain following a non-destructive pulsed ultrasound regimen known to alter diffusivity in other tissues. Freshly obtained rat brain neocortical slices underwent sham treatment or pulsed, low intensity ultrasound for 5min at 1MHz. Transmission electron microscopy revealed intact cells and blood vessels and evidence of enlarged spaces, particularly adjacent to blood vessels, in ultrasound-treated brain slices. Additionally, ultrasound significantly increased the diffusion rate of 100nm, 200nm, and 500nm nanoparticles that were injected into the brain slices, while 2000nm particles were unaffected. In ultrasound-treated slices, 91.6% of the 100nm particles, 20.7% of the 200nm particles, 13.8% of the 500nm particles, and 0% of the 2000nm particles exhibited diffusive motion. Thus, pulsed ultrasound can have meaningful structural effects on the brain extracellular and perivascular spaces without evidence of tissue disruption.