Unknown

Dataset Information

0

Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature.


ABSTRACT: Achieving CO oxidation at room temperature is significant for gas purification but still challenging nowadays. Pt promoted by 3d transition metals (TMs) is a promising candidate for this reaction, but TMs are prone to be deeply oxidized in an oxygen-rich atmosphere, leading to low activity. Herein we report a unique structure design of graphene-isolated Pt from CoNi nanoparticles (PtǀCoNi) for efficiently catalytic CO oxidation in an oxygen-rich atmosphere. CoNi alloy is protected by ultrathin graphene shell from oxidation and therefore modulates the electronic property of Pt-graphene interface via electron penetration effect. This catalyst can achieve near 100% CO conversion at room temperature, while there are limited conversions over Pt/C and Pt/CoNiOx catalysts. Experiments and theoretical calculations indicate that CO will saturate Pt sites, but O2 can adsorb at the Pt-graphene interface without competing with CO, which facilitate the O2 activation and the subsequent surface reaction. This graphene-isolated system is distinct from the classical metal-metal oxide interface for catalysis, and it provides a new thought for the design of heterogeneous catalysts.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC8490350 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3827609 | biostudies-literature
| S-EPMC6424011 | biostudies-literature
| S-EPMC4846310 | biostudies-literature
| S-EPMC5610249 | biostudies-literature
| S-EPMC11359969 | biostudies-literature
| S-EPMC11321628 | biostudies-literature
| S-EPMC8288959 | biostudies-literature
| S-EPMC3432455 | biostudies-literature
| S-EPMC9070415 | biostudies-literature
| S-EPMC11013154 | biostudies-literature