Project description:BackgroundAberrant changes in epigenetic mechanisms such as histone modifications play an important role in cancer progression. PRMT1 which triggers asymmetric dimethylation of histone H4 on arginine 3 (H4R3me2a) is upregulated in human colorectal cancer (CRC) and is essential for cell proliferation. However, how this dysregulated modification might contribute to malignant transitions of CRC remains poorly understood.MethodsIn this study, we integrated biochemical assays including protein interaction studies and chromatin immunoprecipitation (ChIP), cellular analysis including cell viability, proliferation, colony formation, and migration assays, clinical sample analysis, microarray experiments, and ChIP-Seq data to investigate the potential genomic recognition pattern of H4R3me2s in CRC cells and its effect on CRC progression.ResultsWe show that PRMT1 and SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, act cooperatively to promote colorectal cancer (CRC) progression. We find that SMARCA4 is a novel effector molecule of PRMT1-mediated H4R3me2a. Mechanistically, we show that H4R3me2a directly recruited SMARCA4 to promote the proliferative, colony-formative, and migratory abilities of CRC cells by enhancing EGFR signaling. We found that EGFR and TNS4 were major direct downstream transcriptional targets of PRMT1 and SMARCA4 in colon cells, and acted in a PRMT1 methyltransferase activity-dependent manner to promote CRC cell proliferation. In vivo, knockdown or inhibition of PRMT1 profoundly attenuated the growth of CRC cells in the C57BL/6 J-ApcMin/+ CRC mice model. Importantly, elevated expression of PRMT1 or SMARCA4 in CRC patients were positively correlated with expression of EGFR and TNS4, and CRC patients had shorter overall survival. These findings reveal a critical interplay between epigenetic and transcriptional control during CRC progression, suggesting that SMARCA4 is a novel key epigenetic modulator of CRC. Our findings thus highlight PRMT1/SMARCA4 inhibition as a potential therapeutic intervention strategy for CRC.ConclusionPRMT1-mediated H4R3me2a recruits SMARCA4, which promotes colorectal cancer progression by enhancing EGFR signaling.
Project description:To further investigate the functional associations between PRMT1 and SMARCA4 and explore the biological significance of these interactions, we conducted expression profiling on the Agilent SurePrint G3 Human Gene Expression v3 (8*60K,Design ID:072363) using knockdown of PRMT1 or SMARCA4’s RNA in HCT116 cells.
Project description:To further investigate the functional associations between PRMT1 and SMARCA4 and explore the biological significance of these interactions, we conducted expression profiling on the Agilent SurePrint G3 Human Gene Expression v3 (8*60K,Design ID:072363) using knockdown of PRMT1 or SMARCA4’s RNA in HCT116 cells.
Project description:Genomic studies have demonstrated a high frequency of genetic alterations in components of the SWI/SNF complex including the core subunit SMARCA4. However, the mechanisms of tumorigenesis driven by SMARCA4 mutations, particularly in colorectal cancer (CRC), remain largely unknown. In this study, we identified a specific, hotspot mutation in SMARCA4 (c. 3721C>T) which results in a conversion from arginine to tryptophan at residue 1157 (R1157W) in human CRC tissues associated with higher-grade tumors and controls CRC progression. Mechanistically, we found that the SMARCA4R1157W mutation facilitated its recruitment to PRMT1-mediated H4R3me2a (asymmetric dimethylation of Arg 3 in histone H4) and enhanced the ATPase activity of SWI/SNF complex to remodel chromatin in CRC cells. We further showed that the SMARCA4R1157W mutant reinforced the transcriptional expression of EGFR and TNS4 to promote the proliferation of CRC cells and patient-derived tumor organoids. Importantly, we demonstrated that SMARCA4R1157W CRC cells and mutant cell-derived xenografts were more sensitive to the combined inhibition of PRMT1 and SMARCA4 which act synergistically to suppress cell proliferation. Together, our findings show that SMARCA4-R1157W is a critical activating mutation, which accelerates CRC progression through facilitating chromatin recruitment and remodeling. Our results suggest a potential precision therapeutic strategy for the treatment of CRC patients carrying the SMARCA4R1157W mutation.
Project description:Aberrant activation of Notch signaling has an essential role in colorectal cancer (CRC) progression. Amplified in breast cancer 1 (AIB1), also known as steroid receptor coactivator 3 or NCOA3, is a transcriptional coactivator that promotes cancer cell proliferation and invasiveness. However, AIB1 implication in CRC progression through enhancing Notch signaling is unknown. In this study, we found that several CRC cell lines expressed high levels of AIB1, and knockdown of AIB1 decreased cell proliferation, colony formation and tumorigenesis of these CRC cells. Specifically, knockdown of AIB1 inhibited cell cycle progression at G1 phase by decreasing the mRNA levels of cyclin A2, cyclin B1, cyclin E2 and hairy and enhancer of split (Hes) 1. Furthermore, AIB1 interacted with Notch intracellular domain and Mastermind-like 1 and was recruited to the Hes1 promoter to enhance Notch signaling. Downregulation of AIB1 also decreased CRC cell invasiveness in vitro and lung metastasis in vivo. Besides that, knockout of AIB1 in mice inhibited colon carcinogenesis induced by azoxymethane/dextran sodium sulfate treatment. The mRNA levels of cyclin B1 and Hes5 were downregulated, but p27, ATOH1 and MUC2 were upregulated in the colon tumors from AIB1-deficient mice compared with those from wild-type mice. Thus, our results signify the importance of AIB1 in CRC and demonstrate that AIB1 promotes CRC progression at least in part through enhancing Notch signaling, suggesting that AIB1 is a potential molecular target for CRC treatment.
Project description:BackgroundColorectal cancer (CRC) is one of the most common forms of cancer worldwide. The tumor microenvironment plays a key role in promoting the occurrence of chemoresistance in solid cancers. Effective targets to overcome resistance are necessary to improve the survival and prognosis of CRC patients. This study aimed to evaluate the molecular mechanisms of the tumor microenvironment that might be involved in chemoresistance in patients with CRC.MethodsWe evaluated the effects of CCL20 on chemoresistance of CRC by recruitment of regulatory T cells (Tregs) in vitro and in vivo.ResultsWe found that the level of CCL20 derived from tumor cells was significantly higher in Folfox-resistant patients than in Folfox-sensitive patients. The high level of CCL20 was closely associated with chemoresistance and poor survival in CRC patients. Among the drugs in Folfox chemotherapy, we confirmed that 5-FU increased the expression of CCL20 in CRC. Moreover, CCL20 derived from 5-FU-resistant CRC cells promoted recruitment of Tregs. Tregs further enhanced the chemoresistance of CRC cells to 5-FU. FOXO1/CEBPB/NF-κB signaling was activated in CRC cells after 5-FU treatment and was required for CCL20 upregulation mediated by 5-FU. Furthermore, CCL20 blockade suppressed tumor progression and restored 5-FU sensitivity in CRC. Lastly, the expression of these signaling molecules mediating chemoresistance was closely correlated with poor survival of CRC patients.ConclusionsCRC cell-secreted CCL20 can recruit Tregs to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling, indicating that the FOXO1/CEBPB/NF-κB/CCL20 axis might provide a promising target for CRC treatment.
Project description:Sulfiredoxin (SRXN1/Srx) is a multifunction enzyme with a primary antioxidant role of reducing the overoxidized inactive form of peroxiredoxins (Prxs). The function and mechanisms of Srx in cancer development are not well understood. Here, Srx is preferentially expressed in human colorectal cancer cells but not in normal colon epithelial cells. Loss-of-function studies demonstrate that knockdown of Srx in poorly differentiated colorectal cancer cells not only leads to the inhibition of colony formation and cell invasion in vitro, but also reduces tumor xenograft growth and represses metastasis to distal organs in a mouse orthotopic implantation model. Notably, exactly opposite effects were observed in gain-of-function experiments when Srx was ectopically expressed in well-differentiated colorectal cancer cells. Mechanistically, expression of Srx enhances the activation of MAPK signaling through increasing the C-terminal tyrosine phosphorylation levels of EGFR. This function of Srx is mediated through its inhibition of EGFR acetylation at K1037, a novel posttranslational modification of EGFR in human colorectal cancer cells identified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI/MS-MS) proteomic analysis. Furthermore, abolishment of K1037 acetylation in human colorectal cancer cells by site-specific mutagenesis leads to sustained activation of EGFR-MAPK signaling. Combined, these data reveal that Srx promotes colorectal cancer cell invasion and metastasis through a novel mechanism of enhancing EGFR signaling.Sulfiredoxin is a critical oncogenic protein that can be used as a molecular target to develop therapeutics for patients with metastatic colorectal cancer.
Project description:Mesenchymal stem cells (MSCs) have been reported to localize in colorectal carcinomas, and participate in the formation of the tumor microenvironment. They have recently been isolated from colorectal cancer tissues, and are implicated in the growth, invasion, and metastasis of cancer cells. However, the roles and detailed mechanisms associated with human colorectal cancer-derived MSCs (CC-MSCs) have not been fully addressed. In this study, we found that CC-MSCs increased the migration and invasion of colorectal cancer cells and promoted the tumorigenesis of colorectal cancer through epithelial-to-mesenchymal transition (EMT) in vitro. We also found that CC-MSCs enhanced the growth and metastasis of colorectal cancer in vivo. Mechanistically, we determined that interleukin-6 (IL-6) was the most highly expressed cytokine in the CC-MSC conditioned medium, and promoted the progression of colorectal cancer cells through IL-6/JAK2/STAT3 signaling, which activated PI3K/AKT signaling. We used anti-IL-6 antibody to target IL-6. Collectively, these results reveal that the IL-6 secreted by CC-MSCs enhances the progression of colorectal cancer cells through IL-6/JAK2/STAT3 signaling, and could provide a novel therapeutic or preventive target.