Project description:During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the-possibly altered-response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19.We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Project description:ObjectiveThe current study aimed to identify the association between COVID-19 vaccination and prolonged post-COVID symptoms (long-COVID) in adults who reported suffering from this condition.MethodsThis was a retrospective follow-up study of adults with long-COVID syndrome. The data were collected during a phone call to the participants in January-February 2022. We inquired about their current health status and also their vaccination status if they agreed to participate.ResultsIn total, 1236 people were studied; 543 individuals reported suffering from long long- COVID (43.9%). Chi square test showed that 15 out of 51 people (29.4%) with no vaccination and 528 out of 1185 participants (44.6%) who received at least one dose of any vaccine had long long- COVID symptoms (p = 0.032).ConclusionsIn people who have already contracted COVID-19 and now suffer from long-COVID, receiving a COVID vaccination has a significant association with prolonged symptoms of long-COVID for more than one year after the initial infection. However, vaccines reduce the risk of severe COVID-19 (including reinfections) and its catastrophic consequences (e.g., death). Therefore, it is strongly recommended that all people, even those with a history of COVID-19, receive vaccines to protect themselves against this fatal viral infection.
Project description:We analyzed reports on safety and efficacy of JAK-inhibitors in patients with coronavirus infectious disease-2019 (COVID-19) published between January 1st and March 6th 2021 using the Newcastle-Ottawa and Jadad scales for quality assessment. We used disease severity as a proxy for time when JAK-inhibitor therapy was started. We identified 6 cohort studies and 5 clinical trials involving 2367 subjects treated with ruxolitinib (N = 3) or baricitinib 45 (N = 8). Use of JAK-inhibitors decreased use of invasive mechanical ventilation (RR = 0.63; [95% Confidence Interval (CI), 0.47, 0.84]; P = 0.002) and had borderline impact on rates of intensive care unit (ICU) admission (RR = 0.24 [0.06, 1.02]; P = 0.05) and acute respiratory distress syndrome (ARDS; RR = 0.50 [0.19, 1.33]; P = 0.16). JAK-inhibitors did not decrease length of hospitalization (mean difference (MD) -0.18 [-4.54, 4.18]; P = 0.94). Relative risks of death for both drugs were 0.42 [0.30, 0.59] (P < 0.001), for ruxolitinib, RR = 0.33 (0.13, 0.88; P = 0.03) and for baricitinib RR = 0.44 (0.31, 0.63; P < 0.001). Timing of JAK-inhibitor treatment during the course of COVID-19 treatment may be important in determining impact on outcome. However, these data are not consistently reported.
Project description:We report 5 cases of prothrombotic immune thrombocytopenia after exposure to the ChAdOx1 vaccine (AZD1222, Vaxzevria) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients presented 5 to 11 days after first vaccination. The spectrum of clinical manifestations included cerebral venous sinus thrombosis, splanchnic vein thrombosis, arterial cerebral thromboembolism, and thrombotic microangiopathy. All patients had thrombocytopenia and markedly elevated D-dimer. Autoantibodies against platelet factor 4 (PF4) were detected in all patients, although they had never been exposed to heparin. Immunoglobulin from patient sera bound to healthy donor platelets in an AZD1222-dependent manner, suppressed by heparin. Aggregation of healthy donor platelets by patient sera was demonstrated in the presence of buffer or AZD1222 and was also suppressed by heparin. Anticoagulation alone or in combination with eculizumab or intravenous immunoglobulin (IVIG) resolved the pathology in 3 patients. Two patients had thromboembolic events despite anticoagulation at a time when platelets were increasing after IVIG. In summary, an unexpected autoimmune prothrombotic disorder is described after vaccination with AZD1222. It is characterized by thrombocytopenia and anti-PF4 antibodies binding to platelets in AZD1222-dependent manner. Initial clinical experience suggests a risk of unusual and severe thromboembolic events.
Project description:mRNA-based COVID-19 vaccines have played a critical role in reducing severe outcomes of COVID-19. Humoral immune responses against SARS-CoV-2 after vaccination have been extensively studied in blood; however, limited information is available on the presence and duration of SARS-CoV-2 specific antibodies in saliva and other mucosal fluids. Saliva offers a non-invasive sampling method that may also provide a better understanding of mucosal immunity at sites where the virus enters the body. Our objective was to evaluate the salivary immune response after vaccination with the COVID-19 Moderna mRNA-1273 vaccine. Two hundred three staff members of the U.S. Centers for Disease Control and Prevention were enrolled prior to receiving their first dose of the mRNA-1273 vaccine. Participants were asked to self-collect 6 saliva specimens at days 0 (prior to first dose), 14, 28 (prior to second dose), 42, and 56 using a SalivaBio saliva collection device. Saliva specimens were tested for anti-spike protein SARS-CoV-2 specific IgA and IgG enzyme immunoassays. Overall, SARS-CoV-2-specific salivary IgA titers peaked 2 weeks after each vaccine dose, followed by a sharp decrease during the following weeks. In contrast to IgA titers, IgG antibody titers increased substantially 2 weeks after the first vaccine dose, peaked 2 weeks after the second dose and persisted at an elevated level until at least 8 weeks after the first vaccine dose. Additionally, no significant differences in IgA/IgG titers were observed based on age, sex, or race/ethnicity. All participants mounted salivary IgA and IgG immune responses against SARS-CoV-2 after receiving the mRNA-1273 COVID-19 vaccine. Because of the limited follow-up time for this study, more data are needed to assess the antibody levels beyond 2 months after the first dose. Our results confirm the potential utility of saliva in assessing immune responses elicited by immunization and possibly by infection.
Project description:Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by low platelet count and increased bleeding risk. COVID-19 vaccination has been described as risk factor for de novo ITP, but the effects of COVID-19 vaccination in patients with ITP are unknown. Our aims were to investigate the effects of COVID-19 vaccination in ITP patients on platelet count, bleeding complications and ITP exacerbation (any of: ≥50% decline in platelet count; or nadir platelet count <30x109/L with >20% decrease from baseline; or use of rescue therapy). Platelet counts of ITP patients and healthy controls were collected immediately before, 1 and 4 weeks after first and second vaccination. Linear mixed-effects modelling was applied to analyze platelet counts over time. We included 218 ITP patients (50.9% female, mean age 55 years and median platelet count of 106x109/L) and 200 healthy controls (60.0% female, mean age 58 years and median platelet count of 256x109/L). Platelet counts decreased by 6.3% after vaccination. We observed no difference in decrease between the groups. Thirty ITP patients (13.8%, 95%CI 9.5%-19.1%) had an exacerbation and 5 (2.2%, 95%CI 0.7%-5.3%) suffered from a bleeding event. Risk factors for ITP exacerbation were platelet count <50x109/L (OR 5.3, 95%CI 2.1-13.7), ITP treatment at time of vaccination (OR 3.4, 95%CI 1.5-8.0) and age (OR 0.96 per year, 95%CI 0.94-0.99). Our study highlights safety of COVID-19 vaccination in ITP patients and importance of close monitoring platelet counts in a subgroup of ITP patients. ITP patients with exacerbation responded well on therapy.
Project description:There is concern that COVID-19 vaccination may adversely affect immune thrombocytopenia (ITP) patients. Fifty-two consecutive chronic ITP patients were prospectively followed after COVID-19 vaccination. Fifteen percent had no worsening of clinical symptoms but no post-vaccination platelet count; 73% had no new symptoms and no significant platelet count decline. However, 12% had a median platelet count drop of 96% within 2-5 days post vaccination with new bleeding symptoms; after rescue therapy with corticosteroids +/- intravenous immunoglobulin (IVIG), platelets recovered to >30 × 109 /l a median three days later. ITP exacerbation occurred independently of remission status, concurrent ITP treatment, or vaccine type. Safety of a second vaccine dose needs careful assessment.
Project description:People's willingness to vaccinate is critical to combating the COVID-19 pandemic. We devise a representative experiment to study how the design of the vaccine approval procedure affects trust in newly developed vaccines and consequently public attitudes towards vaccination. Compared to an Emergency Use Authorization, choosing the more thorough Conditional Marketing Authorization approval procedure increases vaccination intentions by 13 percentage points. The effects of the increased duration of the approval procedure are positive and significant only for Emergency Use Authorization. Treatment effects do not differ between relevant subgroups, such as respondents who had (did not have) COVID-19, or between vaccinated and unvaccinated respondents. Increased trust in the vaccine is the key mediator of treatment effects on vaccination intentions.
Project description:RNA was extracted from whole blood of subjects collected in Tempus tubes prior to COVID-19 mRNA booster vaccination. D01 and D21 correspond to samples collected at pre-dose 1 and pre-dose 2 respectively. RNA was also extracted from blood collected at indicated time points post-vaccination. DB1, DB2, DB4 and DB7 correspond to booster day 1 (pre-booster), booster day 2, booster day 4 and booster day 7 respectively. The case subject experienced cardiac complication following mRNA booster vaccination. We performed gene expression analysis of case versus controls over time.