Unknown

Dataset Information

0

PSONIC: Ploidy-aware Syntenic Orthologous Networks Identified via Collinearity.


ABSTRACT: With the rapid rise in availability of high-quality genomes for closely related species, methods for orthology inference that incorporate synteny are increasingly useful. Polyploidy perturbs the 1:1 expected frequencies of orthologs between two species, complicating the identification of orthologs. Here we present a method of ortholog inference, Ploidy-aware Syntenic Orthologous Networks Identified via Collinearity (pSONIC). We demonstrate the utility of pSONIC using four species in the cotton tribe (Gossypieae), including one allopolyploid, and place between 75-90% of genes from each species into nearly 32,000 orthologous groups, 97% of which consist of at most singletons or tandemly duplicated genes - 58.8% more than comparable methods that do not incorporate synteny. We show that 99% of singleton gene groups follow the expected tree topology, and that our ploidy-aware algorithm recovers 97.5% identical groups when compared to splitting the allopolyploid into its two respective subgenomes, treating each as separate "species".

SUBMITTER: Conover JL 

PROVIDER: S-EPMC8496325 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4765882 | biostudies-other
| S-EPMC3350440 | biostudies-literature
| S-EPMC9295985 | biostudies-literature
| S-EPMC7645761 | biostudies-literature
| S-EPMC3001087 | biostudies-literature
| S-EPMC7495458 | biostudies-literature
| S-EPMC8102145 | biostudies-literature
| S-EPMC6129293 | biostudies-literature
| S-EPMC7843634 | biostudies-literature
| S-EPMC7071511 | biostudies-literature