Project description:miRNAs are important regulators of gene expression that play a key role in many biological processes. High-throughput techniques allow researchers to discover and characterize large sets of miRNAs, and enrichment analysis tools are becoming increasingly important in decoding which miRNAs are implicated in biological processes. Enrichment analysis of miRNA targets is the standard technique for functional analysis, but this approach carries limitations and bias; alternatives are currently being proposed, based on direct and curated annotations. In this review, we describe the two workflows of miRNAs enrichment analysis, based on target gene or miRNA annotations, highlighting statistical tests, software tools, up-to-date databases, and functional annotations resources in the study of metazoan miRNAs.
Project description:High-throughput assays for measuring the three-dimensional (3D) configuration of DNA have provided unprecedented insights into the relationship between DNA 3D configuration and function. Data interpretation from assays such as ChIA-PET and Hi-C is challenging because the data is large and cannot be easily rendered using standard genome browsers. An effective Hi-C visualization tool must provide several visualization modes and be capable of viewing the data in conjunction with existing, complementary data. We review five software tools that do not require programming expertise. We summarize their complementary functionalities, and highlight which tool is best equipped for specific tasks.
Project description:The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform.
Project description:BackgroundSystematic reviews and meta-analyses of test accuracy studies are increasingly being recognised as central in guiding clinical practice. However, there is currently no dedicated and comprehensive software for meta-analysis of diagnostic data. In this article, we present Meta-DiSc, a Windows-based, user-friendly, freely available (for academic use) software that we have developed, piloted, and validated to perform diagnostic meta-analysis.ResultsMeta-DiSc a) allows exploration of heterogeneity, with a variety of statistics including chi-square, I-squared and Spearman correlation tests, b) implements meta-regression techniques to explore the relationships between study characteristics and accuracy estimates, c) performs statistical pooling of sensitivities, specificities, likelihood ratios and diagnostic odds ratios using fixed and random effects models, both overall and in subgroups and d) produces high quality figures, including forest plots and summary receiver operating characteristic curves that can be exported for use in manuscripts for publication. All computational algorithms have been validated through comparison with different statistical tools and published meta-analyses. Meta-DiSc has a Graphical User Interface with roll-down menus, dialog boxes, and online help facilities.ConclusionMeta-DiSc is a comprehensive and dedicated test accuracy meta-analysis software. It has already been used and cited in several meta-analyses published in high-ranking journals. The software is publicly available at http://www.hrc.es/investigacion/metadisc_en.htm.
Project description:With the development of next-generation sequencing (NGS) techniques, many software tools have emerged for the discovery of novel microRNAs (miRNAs) and for analyzing the miRNAs expression profiles. An overall evaluation of these diverse software tools is lacking. In this study, we evaluated eight software tools based on their common feature and key algorithms. Three deep-sequencing data sets were collected from different species and used to assess the computational time, sensitivity and accuracy of detecting known miRNAs as well as their capacity for predicting novel miRNAs. Our results provide useful information for researchers to facilitate their selection of the optimal software tools for miRNA analysis depending on their specific requirements, i.e. novel miRNAs discovery or miRNA expression profile analysis of sequencing data sets.
Project description:BackgroundThe study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data.ResultsWe have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data.ConclusionsThe proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.
Project description:BackgroundMeta-analysis is increasingly used as a key source of evidence synthesis to inform clinical practice. The theory and statistical foundations of meta-analysis continually evolve, providing solutions to many new and challenging problems. In practice, most meta-analyses are performed in general statistical packages or dedicated meta-analysis programs.ResultsHerein, we introduce Meta-Analyst, a novel, powerful, intuitive, and free meta-analysis program for the meta-analysis of a variety of problems. Meta-Analyst is implemented in C# atop of the Microsoft .NET framework, and features a graphical user interface. The software performs several meta-analysis and meta-regression models for binary and continuous outcomes, as well as analyses for diagnostic and prognostic test studies in the frequentist and Bayesian frameworks. Moreover, Meta-Analyst includes a flexible tool to edit and customize generated meta-analysis graphs (e.g., forest plots) and provides output in many formats (images, Adobe PDF, Microsoft Word-ready RTF). The software architecture employed allows for rapid changes to be made to either the Graphical User Interface (GUI) or to the analytic modules.We verified the numerical precision of Meta-Analyst by comparing its output with that from standard meta-analysis routines in Stata over a large database of 11,803 meta-analyses of binary outcome data, and 6,881 meta-analyses of continuous outcome data from the Cochrane Library of Systematic Reviews. Results from analyses of diagnostic and prognostic test studies have been verified in a limited number of meta-analyses versus MetaDisc and MetaTest. Bayesian statistical analyses use the OpenBUGS calculation engine (and are thus as accurate as the standalone OpenBUGS software).ConclusionWe have developed and validated a new program for conducting meta-analyses that combines the advantages of existing software for this task.
Project description:Background: There is interest in the use geospatial data for development of acute stroke services given the importance of timely access to acute reperfusion therapy. This paper aims to introduce clinicians and citizen scientists to the possibilities offered by open source softwares (R and Python) for analyzing geospatial data. It is hoped that this introduction will stimulate interest in the field as well as generate ideas for improving stroke services. Method: Instructions on installation of libraries for R and Python, source codes and links to census data are provided in a notebook format to enhance experience with running the software. The code illustrates different aspects of using geospatial analysis: (1) creation of choropleth (thematic) map which depicts estimate of stroke cases per post codes; (2) use of map to help define service regions for rehabilitation after stroke. Results: Choropleth map showing estimate of stroke per post codes and service boundary map for rehabilitation after stroke. Conclusions The examples in this article illustrate the use of a range of components that underpin geospatial analysis. By providing an accessible introduction to these areas, clinicians and researchers can create code to answer clinically relevant questions on topics such as service delivery and service demand.
Project description:IntroductionThe field of metabolomics has expanded greatly over the past two decades, both as an experimental science with applications in many areas, as well as in regards to data standards and bioinformatics software tools. The diversity of experimental designs and instrumental technologies used for metabolomics has led to the need for distinct data analysis methods and the development of many software tools.ObjectivesTo compile a comprehensive list of the most widely used freely available software and tools that are used primarily in metabolomics.MethodsThe most widely used tools were selected for inclusion in the review by either ? 50 citations on Web of Science (as of 08/09/16) or the use of the tool being reported in the recent Metabolomics Society survey. Tools were then categorised by the type of instrumental data (i.e. LC-MS, GC-MS or NMR) and the functionality (i.e. pre- and post-processing, statistical analysis, workflow and other functions) they are designed for.ResultsA comprehensive list of the most used tools was compiled. Each tool is discussed within the context of its application domain and in relation to comparable tools of the same domain. An extended list including additional tools is available at https://github.com/RASpicer/MetabolomicsTools which is classified and searchable via a simple controlled vocabulary.ConclusionThis review presents the most widely used tools for metabolomics analysis, categorised based on their main functionality. As future work, we suggest a direct comparison of tools' abilities to perform specific data analysis tasks e.g. peak picking.