Project description:Since its emergence at the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the infection of more than 600 million people worldwide and has significant damage to global medical, economic, and political structures. Currently, a highly mutated variant of concern, SARS-CoV-2 Omicron, has evolved into many different subvariants mainly including BA.1, BA.2, BA.3, BA.4/5, and the recently emerging BA.2.75.2, BA.2.76, BA.4.6, BA.4.7, BA.5.9, BF.7, BQ.1, BQ.1.1, XBB, XBB.1, etc. Mutations in the N-terminal domain (NTD) of the spike protein, such as A67V, G142D, and N212I, alter the antigenic structure of Omicron, while mutations in the spike receptor binding domain (RBD), such as R346K, Q493R, and N501Y, increase the affinity for angiotensin-converting enzyme 2 (ACE2). Both types of mutations greatly increase the capacity of Omicron to evade immunity from neutralizing antibodies, produced by natural infection and/or vaccination. In this review, we systematically assess the immune evasion capacity of SARS-CoV-2, with an emphasis on the neutralizing antibodies generated by different vaccination regimes. Understanding the host antibody response and the evasion strategies employed by SARS-CoV-2 variants will improve our capacity to combat newly emerging Omicron variants.
Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Project description:SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been associated with substantial global morbidity and mortality. Despite a tropism that is largely confined to the airways, COVID-19 is associated with multiorgan dysfunction and long-term cognitive pathologies. A major driver of this biology stems from the combined effects of virus-mediated interference with the host antiviral defences in infected cells and the sensing of pathogen-associated material by bystander cells. Such a dynamic results in delayed induction of type I and III interferons (IFN-I and IFN-III) at the site of infection, but systemic IFN-I and IFN-III priming in distal organs and barrier epithelial surfaces, respectively. In this Review, we examine the relationship between SARS-CoV-2 biology and the cellular response to infection, detailing how antagonism and dysregulation of host innate immune defences contribute to disease severity of COVID-19.
Project description:BackgroundSARS-CoV-2 is described to cause mild to moderate symptoms in children. To date, clinical data and symptoms of the Delta variant in pediatric patients are lacking.AimTo describe clinical characteristics and outcomes of infants admitted in the pediatric intensive care unit (PICU) during the period of Delta variant predominance.MethodsWe performed a retrospective study, between June 23, 2021 and August 16, 2021. We included children aged under 15 years, admitted to PICU with severe and critical form of SARS-CoV-2 infection as confirmed by RT-PCR. We reviewed medical records for all patients.ResultsDuring the study period, 20 infants were included. The median age was 47 days (IQR: 26.5-77). The sex ratio was 0.8 (9 males). No underlying medical conditions were noted. Parents were not vaccinated. Respiratory involvement was the main feature to be observed in our cohort. Eleven patients had pediatric acute respiratory distress (PARDS) with a median oxygen saturation index (OSI) of 9 (IQR: 7-11). PARDS was mild in 4 cases, moderate in 5 cases and severe in 2 cases. Hemodynamic instability was observed in 4 cases. The main radiological finding was ground glass opacities in 11 cases. Seventeen patients were mechanically ventilated and 3 of them were escalated to high-frequency oscillatory ventilation. The median duration of mechanical ventilation was 6 days (IQR 2.5-12.5). The remaining patients were managed with high flow nasal cannula. Four patients died.ConclusionWe report herein a case series of very young infants, with no comorbidities, and with a life-threatening illness due to SARS-CoV-2 Delta variant.
Project description:Given the COVID-19 pandemic, there is interest in understanding ligand-receptor features and targeted antibody-binding attributes against emerging SARS-CoV-2 variants. Here, we developed a large-scale structure-based pipeline for analysis of protein-protein interactions regulating SARS-CoV-2 immune evasion. First, we generated computed structural models of the Spike protein of 3 SARS-CoV-2 variants (B.1.1.529, BA.2.12.1, and BA.5) bound either to a native receptor (ACE2) or to a large panel of targeted ligands (n = 282), which included neutralizing or therapeutic monoclonal antibodies. Moreover, by using the Barnes classification, we noted an overall loss of interfacial interactions (with gain of new interactions in certain cases) at the receptor-binding domain (RBD) mediated by substituted residues for neutralizing complexes in classes 1 and 2, whereas less destabilization was observed for classes 3 and 4. Finally, an experimental validation of predicted weakened therapeutic antibody binding was performed in a cell-based assay. Compared with the original Omicron variant (B.1.1.529), derivative variants featured progressive destabilization of antibody-RBD interfaces mediated by a larger set of substituted residues, thereby providing a molecular basis for immune evasion. This approach and findings provide a framework for rapidly and efficiently generating structural models for SARS-CoV-2 variants bound to ligands of mechanistic and therapeutic value.
Project description:This report describes the discovery and characterization of antibodies with potential broad SARS-CoV-2 neutralization profiles. The antibodies were obtained from a phage display library built with the VH repertoire of a convalescent COVID-19 patient who was infected with SARS-CoV-2 B.1.617.2 (Delta). The patient received a single dose of Ad5-nCoV vaccine (Convidecia™, CanSino Biologics Inc.) one month before developing COVID-19 symptoms. Four synthetic VL libraries were used as counterparts of the immune VH repertoire. After three rounds of panning with SARS-CoV-2 receptor-binding domain wildtype (RBD-WT) 34 unique scFvs, were identified, with 27 cross-reactive for the RBD-WT and RBD Delta (RBD-DT), and seven specifics for the RBD-WT. The cross-reactive scFvs were more diverse than the RBD-WT specific ones, being encoded by several IGHV genes from the IGHV1 and IGHV3 families combined with short HCDR3s. Six cross-reactive scFvs and one RBD-WT specific scFv were converted to human IgG1 (hIgG1). Out of the seven antibodies, six blocked the RBD-WT binding to angiotensin converting enzyme 2 (ACE2), suggesting these antibodies may neutralize the SARS-CoV-2 infection. Importantly, one of the antibodies also recognized the RBD from the B.1.1.529 (Omicron) isolate, implying that the VH repertoire of the convalescent patient would protect against SARS-CoV-2 Wildtype, Delta, and Omicron. From a practical viewpoint, the triple cross-reactive antibody provides the substrate for developing therapeutic antibodies with a broad SARS-CoV-2 neutralization profile.
Project description:The worldwide outbreak of SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 as a novel human coronavirus, was the worrying news at the beginning of 2020. Since its emergence complicated more than 870,000 individuals and led to more than 43,000 deaths worldwide. Considering to the potential threat of a pandemic and transmission severity of it, there is an urgent need to evaluate and realize this new virus's structure and behavior and the immunopathology of this disease to find potential therapeutic protocols and to design and develop effective vaccines. This disease is able to agitate the response of the immune system in the infected patients, so ARDS, as a common consequence of immunopathological events for infections with Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2, could be the main reason for death. Here, we summarized the immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2 and therapeutic and prophylactic strategies with a focus on vaccine development and its challenges.
Project description:There remains an urgent need to delinate immune cell states that contribute to mortality in critially ill COVID-19 patients. To better understand determinants of mortality, we performed high dimensional profiling of blood and respiratory samples from critially ill COVID-19 patients. Single-cell RNAseq based characterization of peripheral immune states reveal distinct expression profiles that were predictive of COVID-19 mortality. Temporal analysis revealed a that persistently elevated levels of inflammatory monocyte signatures and persistent interferon signaling preceeded concerted upregulation of inflammatory cytokines. Interrogation of lower respiratory tract saples revelaed that infected myeliod cells upregulated CXCL10, and elevated levels of CXCL10 in plasma were associated with a high risk of death. Overall, our data suggest a pivotal role for myeloid cell states in severe COVID-19 and may faciliate discovery of new diagnostics and therapeutics.