Ontology highlight
ABSTRACT: Background
Rheumatoid arthritis (RA) is the most common autoimmune system diseases in our world. More studies in recent years have shown that FCRL gene polymorphisms is closely related to autoimmune diseases. It is suggested that genetic factors play a crucial role in the pathogenesis of this disease. In this study, we aimed to investigate the relationship between FCRL1 rs2050568, FCRL3 rs2317230 and FCRL6 rs58240276 polymorphisms and RA risk in the Chinese Han population. 506 with RA patients and 509 healthy controls were recruited in this study, and the single nucleotide polymorphisms (SNPs) was successfully genotyped using the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (95% CIs) after adjusting for age and gender were conducted to assess these SNPs polymorphisms and RA risk. The multifactor dimensionality reduction (MDR) method was conducted to analyze SNP-SNP interaction.Results
Our results revealed that there no significant association was observed between the allele and genotype frequencies among these SNPs and RA risk (all p > 0.05). Straified analysis by age and gender, the results confirmed that FCRL1 rs2050568 T/T genotype enhanced the risk of RA in females (p = 0.014). The G/T - T/T genotype of FCRL3 rs2317230 was correlated with a decreased RA risk in males (p = 0.021). We also observed that the C/T-T/T genotype of FCRL6 rs58240276 was increased the risk of RA in the group at age > 54 years (p = 0.016). In addition, FCRL1 rs2050568-TT, FCRL6 rs58240276-TT and FCRL1 rs2050568-TT, FCRL3 rs2317230-TT, FCRL6 rs58240276-TT are the best models for multi-site MDR analysis (p < 0.05), and the two best models mentioned above and classes RA have the most significant correlation.Conclusions
Our study demonstrated that FCRL1 rs2050568, FCRL3 rs2317230, and FCRL6 rs58240276 polymorphisms were correlated with RA susceptibility in the Chinese Han population.
SUBMITTER: Yang Y
PROVIDER: S-EPMC8499487 | biostudies-literature |
REPOSITORIES: biostudies-literature