Project description:Episodic memory enables humans to encode and later vividly retrieve information about our rich experiences, yet the neural representations that support this mental capacity are poorly understood. Using a large fMRI dataset (n = 468) of face-name associative memory tasks and principal component analysis to examine neural representational dimensionality (RD), we found that the human brain maintained a high-dimensional representation of faces through hierarchical representation within and beyond the face-selective regions. Critically, greater RD was associated with better subsequent memory performance both within and across participants, and this association was specific to episodic memory but not general cognitive abilities. Furthermore, the frontoparietal activities could suppress the shared low-dimensional fluctuations and reduce the correlations of local neural responses, resulting in greater RD. RD was not associated with the degree of item-specific pattern similarity, and it made complementary contributions to episodic memory. These results provide a mechanistic understanding of the role of RD in supporting accurate episodic memory.
Project description:The present experiment evaluated the effects of acute exercise on iconic memory and short- and long-term episodic memory. A two-arm, parallel-group randomized experiment was employed (n = 20 per group; Mage = 21 year). The experimental group engaged in an acute bout of moderate-intensity treadmill exercise for 15 min, while the control group engaged in a seated, time-matched computer task. Afterwards, the participants engaged in a paragraph-level episodic memory task (20 min delay and 24 h delay recall) as well as an iconic memory task, which involved 10 trials (at various speeds from 100 ms to 800 ms) of recalling letters from a 3 × 3 array matrix. For iconic memory, there was a significant main effect for time (F = 42.9, p < 0.001, η²p = 0.53) and a trend towards a group × time interaction (F = 2.90, p = 0.09, η²p = 0.07), but no main effect for group (F = 0.82, p = 0.37, η²p = 0.02). The experimental group had higher episodic memory scores at both the baseline (19.22 vs. 17.20) and follow-up (18.15 vs. 15.77), but these results were not statistically significant. These findings provide some suggestive evidence hinting towards an iconic memory and episodic benefit from acute exercise engagement.
Project description:Understanding and improving memory are vital to enhance human life. Theta rhythm is associated with memory consolidation and coding, but the trainability and effects on long-term memory of theta rhythm are unknown. This study investigated the ability to improve long-term memory using a neurofeedback (NFB) technique reflecting the theta/low-beta power ratio on an electroencephalogram (EEG). Our study consisted of three stages. First, the long-term memory of participants was measured. In the second stage, the participants in the NFB group received 3 days of theta/low-beta NFB training. In the third stage, the long-term memory was measured again. The NFB group had better episodic and semantic long-term memory than the control group and significant differences in brain activity between episodic and semantic memory during the recall tests were revealed. These findings suggest that it is possible to improve episodic and semantic long-term memory abilities through theta/low-beta NFB training.
Project description:Past experience provides a rich source of predictive information about the world that could be used to guide and optimize ongoing perception. However, the neural mechanisms that integrate information coded in long-term memory (LTM) with ongoing perceptual processing remain unknown. Here, we explore how the contents of LTM optimize perception by modulating anticipatory brain states. By using a paradigm that integrates LTM and attentional orienting, we first demonstrate that the contents of LTM sharpen perceptual sensitivity for targets presented at memory-predicted spatial locations. Next, we examine oscillations in EEG to show that memory-guided attention is associated with spatially specific desynchronization of alpha-band activity over visual cortex. Additionally, we use functional MRI to confirm that target-predictive spatial information stored in LTM triggers spatiotopic modulation of preparatory activity in extrastriate visual cortex. Finally, functional MRI results also implicate an integrated cortical network, including the hippocampus and a dorsal frontoparietal circuit, as a likely candidate for organizing preparatory states in visual cortex according to the contents of LTM.
Project description:We recently showed that compared with sighted, early blind individuals have better episodic memory for environmental sounds, but not odors, after a short retention interval (∼ 8 - 9 min). Few studies have investigated potential effects of blindness on memory across long time frames, such as months or years. Consequently, it was unclear whether compensatory effects may vary as a function of retention interval. In this study, we followed-up participants (N = 57 out of 60) approximately 1 year after the initial testing and retested episodic recognition for environmental sounds and odors, and identification ability. In contrast to our previous findings, the early blind participants (n = 14) performed at a similar level as the late blind (n = 13) and sighted (n = 30) participants for sound recognition. Moreover, the groups had similar recognition performance of odors and identification ability of odors and sounds. These findings suggest that episodic odor memory is unaffected by blindness after both short and long retention intervals. However, the effect of blindness on episodic memory for sounds may vary as a function of retention interval, such that early blind individuals have an advantage over sighted across short but not long time frames. We speculate that the finding of a differential effect of blindness on auditory episodic memory across retention intervals may be related to different memory strategies at initial and follow-up assessments. In conclusion, this study suggests that blindness does not influence auditory or olfactory episodic memory as assessed after a long retention interval.
Project description:We present a multi-voxel analytical approach, feature-specific informational connectivity (FSIC), that leverages hierarchical representations from a neural network to decode neural reactivation in fMRI data collected while participants performed an episodic visual recall task. We show that neural reactivation associated with low-level (e.g. edges), high-level (e.g. facial features), and semantic (e.g. "terrier") features occur throughout the dorsal and ventral visual streams and extend into the frontal cortex. Moreover, we show that reactivation of both low- and high-level features correlate with the vividness of the memory, whereas only reactivation of low-level features correlates with recognition accuracy when the lure and target images are semantically similar. In addition to demonstrating the utility of FSIC for mapping feature-specific reactivation, these findings resolve the contributions of low- and high-level features to the vividness of visual memories and challenge a strict interpretation the posterior-to-anterior visual hierarchy.
Project description:The brain's ability to associate different stimuli is vital for long-term memory, but how neural ensembles encode associative memories is unknown. Here we studied how cell ensembles in the basal and lateral amygdala encode associations between conditioned and unconditioned stimuli (CS and US, respectively). Using a miniature fluorescence microscope, we tracked the Ca2+ dynamics of ensembles of amygdalar neurons during fear learning and extinction over 6 days in behaving mice. Fear conditioning induced both up- and down-regulation of individual cells' CS-evoked responses. This bi-directional plasticity mainly occurred after conditioning, and reshaped the neural ensemble representation of the CS to become more similar to the US representation. During extinction training with repetitive CS presentations, the CS representation became more distinctive without reverting to its original form. Throughout the experiments, the strength of the ensemble-encoded CS-US association predicted the level of behavioural conditioning in each mouse. These findings support a supervised learning model in which activation of the US representation guides the transformation of the CS representation.
Project description:BackgroundSpecific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance.ResultsRecognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better.ConclusionMusical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval.
Project description:Pannexin 1 (Panx1) are ubiquitously expressed proteins that form plasma membrane channels permeable to anions and moderate sized signaling molecules (e.g., ATP, glutamate). In the nervous system, activation of Panx1 channels have been extensively shown to contribute to distinct neurological disorders (epilepsy, chronic pain, migraine, neuroAIDS, etc.) but knowledge of extent to which these channels have a physiological role remains restricted to three studies supporting their involvement in hippocampus dependent learning. Given that Panx1 channels may provide an important mechanism for activity-dependent neuron-glia interaction, we used Panx1 transgenic mice with global and cell-type specific deletions of Panx1 to interrogate their participation in working and reference memory. Using the 8-arm radial maze, we show that long-term spatial reference memory, but not spatial working memory, is deficient in Panx1-null mice and that both astrocyte and neuronal Panx1 contribute to the consolidation of long-term spatial memory. Field potential recordings in hippocampal slices of Panx1-null mice revealed an attenuation of both long-term potentiation (LTP) of synaptic strength and long-term depression (LTD) at Schaffer collateral - CA1 synapses without alterations basal synaptic transmission or pre-synaptic paired-pulse facilitation. Our results implicate both neuronal and astrocyte Panx1 channels as critical players for the development and maintenance of long-term spatial reference memory in mice.
Project description:Pannexin 1 (Panx1) is an ubiquitously expressed protein that forms plasma membrane channels permeable to anions and moderate-sized signaling molecules (e.g., ATP, glutamate). In the nervous system, activation of Panx1 channels has been extensively shown to contribute to distinct neurological disorders (epilepsy, chronic pain, migraine, neuroAIDS, etc.), but knowledge of the extent to which these channels have a physiological role remains restricted to three studies supporting their involvement in hippocampus dependent learning. Given that Panx1 channels may provide an important mechanism for activity-dependent neuron-glia interaction, we used Panx1 transgenic mice with global and cell-type specific deletions of Panx1 to interrogate their participation in working and reference memory. Using the eight-arm radial maze, we show that long-term spatial reference memory, but not spatial working memory, is deficient in Panx1-null mice and that both astrocyte and neuronal Panx1 contribute to the consolidation of long-term spatial memory. Field potential recordings in hippocampal slices of Panx1-null mice revealed an attenuation of both long-term potentiation (LTP) of synaptic strength and long-term depression (LTD) at Schaffer collateral-CA1 synapses without alterations of basal synaptic transmission or pre-synaptic paired-pulse facilitation. Our results implicate both neuronal and astrocyte Panx1 channels as critical players for the development and maintenance of long-term spatial reference memory in mice.