Project description:With the development of magnetic manipulation technology based on magnetic nanoparticles (MNPs), scaffold-free microtissues can be constructed utilizing the magnetic attraction of MNP-labeled cells. The rapid in vitro construction and in vivo vascularization of microtissues with complex hierarchical architectures are of great importance to the viability and function of stem cell microtissues. Endothelial cells are indispensable for the formation of blood vessels and can be used in the prevascularization of engineered tissue constructs. Herein, safe and rapid magnetic labeling of cells was achieved by incubation with MNPs for 1 h, and ultrathick scaffold-free microtissues with different sophisticated architectures were rapidly assembled, layer by layer, in 5 min intervals. The in vivo transplantation results showed that in a stem cell microtissue with trisection architecture, the two separated human umbilical vein endothelial cell (HUVEC) layers would spontaneously extend to the stem cell layers and connect with each other to form a spatial network of functional blood vessels, which anastomosed with the host vasculature. The "hamburger" architecture of stem cell microtissues with separated HUVEC layers could promote vascularization and stem cell survival. This study will contribute to the construction and application of structural and functional tissues or organs in the future.
Project description:Microtissue self-assembly is thought to be driven primarily by cadherins, while connexons have been examined mainly in intercellular coupling. We investigated whether connexon 43 (Cx43)-mediated cell adhesion modulates self-assembly of human KGN granulosa cells, normal human fibroblasts (NHFs), and MCF-7 breast cancer cells seeded into nonadhesive agarose gels. We found that treatment with anti-Cx43 E2 (112 ?g/ml), which suppresses Cx43 docking, significantly inhibited the kinetics of KGN and NHF self-assembly compared to the preimmune sera control (41.1 ± 4.5 and 24.5 ± 10.4% at 8 h, respectively). Likewise, gap junction inhibitor carbenoxolone also inhibited self-assembly of KGN, NHF, and MCF-7 cells in a dose-dependent manner that was specific to cell type. In contrast, Gap26 connexin mimetic peptide, which inhibits channel permeability but not docking, accelerated self-assembly of KGN and NHF microtissues. Experiments using selective enzymatic digestion of cell adhesion molecules and neutralizing N-cadherin antibodies further showed that self-assembly was comparably disrupted by inhibiting connexin- and cadherin-mediated adhesion. These findings demonstrate that connexon-mediated cell adhesion and intercellular communication differentially influence microtissue self-assembly, and that their contributions are comparable to those of cadherins.
Project description:Encapsulations of cells in type-I collagen matrices are widely used three-dimensional (3D) in vitro models of wound healing and tissue morphogenesis and are common constructs for drug delivery and for in vivo implantation. As cells remodel the exogenous collagen scaffold, they also assemble a dense fibronectin (Fn) matrix that aids in tissue compaction; however, the spatio-temporal (re)organization of Fn and collagen in this setting has yet to be quantitatively investigated. Here, we utilized microfabricated tissue gauges (?TUGs) to guide the contraction of microscale encapsulations of fibroblasts within collagen gels. We combined this system with a Foerster Radius Energy Transfer (FRET) labeled biosensor of Fn conformation to probe the organization, conformation and remodeling of both the exogenous collagen and the cell-assembled Fn matrices. We show that within hours, compact Fn from culture media adsorbed to the collagen scaffold. Over the course of tissue remodeling, this Fn-coated collagen scaffold was compacted into a thin, sparsely populated core around which cells assembled a dense fibrillar Fn shell that was rich in both cell and plasma derived Fn. This resulted in two separate Fn populations with different conformations (compact/adsorbed and extended/fibrillar) in microtissues. Cell contractility and microtissue geometry cooperated to remodel these two populations, resulting in spatial gradients in Fn conformation. Together, these results highlight an important spatio-temporal interplay between two prominent extracellular matrix (ECM) molecules (Fn and collagen) and cellular traction forces, and will have implications for future studies of the force-mediated remodeling events that occur within collagen scaffolds either in 3D in vitro models or within surgical implants in vivo.
Project description:Colloidal gels are three-dimensional networks of microgel particles and can be utilized to design microtissues where the differential adhesive interactions between the particles and cells, guided by their surface energetics, are engineered to spatially assemble the cellular and colloidal components into three-dimensional microtissues. In this work we utilized a colloidal interaction approach to design cell-polyurethane (PU) microgel bimodal microtissues using endothelial cells (ECs) as a normal cell model and a nonmalignant breast cancer cell line (MCF-7) as a cancer cell model. PU microgels were developed from a library of segmental polyurethanes with poly(ethylene glycol) soft segment and aliphatic diisocyanate/l-tyrosine based chain extender as hard segment to modulate the interactions between PU colloidal particles and cells. The surface energies of the microgel particles and cells were estimated using Zisman's critical surface tension and van Oss-Good-Chaudhury theory (vOGCT) from liquid contact angle analysis. Binary interaction potentials between colloidal PU particles and cells and the ternary interaction between colloidal PU particle, cell, and collagen I/Matrigel were calculated to explain the formation of microtissues and their spreading in extraneous biomatrix respectively by using classical and extended DLVO theory (XDLVO). Furthermore, rheological analysis and in silico simulations were used to analyze the assembly and spreading of the PU microgel based microtissues. In vitro experiments showed that ECs and MCF-7 displayed more differentiated (EC spreading/MCF-7 lumen formation) character when mixed with microgel particles that were stable in aqueous medium and more undifferentiated character (EC nonspreading/MCF-7 spreading) when mixed with microgel particles unstable in aqueous medium.
Project description:New autologous skin regeneration technology yielded full-thickness skin as evidenced by clinical observation and skin biopsy 5 months after surgery, providing relief for debilitating split-thickness skin graft contracture in a pediatric burn case.
Project description:Predicting biosynthetic gene clusters (BGCs) is critically important for discovery of antibiotics and other natural products. While BGC prediction from complete genomes is a well-studied problem, predicting BGCs in fragmented genomic assemblies remains challenging. The existing BGC prediction tools often assume that each BGC is encoded within a single contig in the genome assembly, a condition that is violated for most sequenced microbial genomes where BGCs are often scattered through several contigs, making it difficult to reconstruct them. The situation is even more severe in shotgun metagenomics, where the contigs are often short, and the existing tools fail to predict a large fraction of long BGCs. While it is difficult to assemble BGCs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding long BGCs. We describe biosyntheticSPAdes, a tool for predicting BGCs in assembly graphs and demonstrate that it greatly improves the reconstruction of BGCs from genomic and metagenomics data sets.
Project description:Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring (U1, U5, spliced leader snRNPs), or variant Sm cores with snRNA-specific Sm subunits (U2, U4 snRNPs). Searching for specificity factors, we identified SMN and Gemin2 proteins that are highly divergent from known orthologs. SMN is splicing-essential in trypanosomes and nuclear-localized, suggesting that Sm core assembly in trypanosomes is nuclear. We demonstrate in vitro that SMN is sufficient to confer specificity of canonical Sm core assembly and to discriminate against binding to nonspecific RNA and to U2 and U4 snRNAs. SMN interacts transiently with the SmD3B subcomplex, contacting specifically SmB. SMN remains associated throughout the assembly of the Sm heteroheptamer and dissociates only when a functional Sm site is incorporated. These data establish a novel role of SMN, mediating snRNP specificity in Sm core assembly, and yield new biochemical insight into the mechanism of SMN activity.
Project description:In nature, cells self-assemble at the microscale into complex functional configurations. This mechanism is increasingly exploited to assemble biofidelic biological systems in vitro. However, precise coding of 3D multicellular living materials is challenging due to their architectural complexity and spatiotemporal heterogeneity. Therefore, there is an unmet need for an effective assembly method with deterministic control on the biomanufacturing of functional living systems, which can be used to model physiological and pathological behavior. Here, a universal system is presented for 3D assembly and coding of cells into complex living architectures. In this system, a gadolinium-based nonionic paramagnetic agent is used in conjunction with magnetic fields to levitate and assemble cells. Thus, living materials are fabricated with controlled geometry and organization and imaged in situ in real time, preserving viability and functional properties. The developed method provides an innovative direction to monitor and guide the reconfigurability of living materials temporally and spatially in 3D, which can enable the study of transient biological mechanisms. This platform offers broad applications in numerous fields, such as 3D bioprinting and bottom-up tissue engineering, as well as drug discovery, developmental biology, neuroscience, and cancer research.
Project description:The relaxivity of a magnetically responsive Gd complex can be controlled by non-covalent molecular recognition with a water-soluble deep cavitand. Lowered relaxivity is conferred by a self-assembled micellar "off state", and the contrast can be regenerated by addition of a superior guest.
Project description:Interfacial solar vapor generation is a promising technique to efficiently get fresh water from seawater or effluent. However, for the traditional static evaporation models, further performance improvement has encountered bottlenecks due to the lack of dynamic management and self-regulation on the evolving water movement and phase change in the evaporation process. Here, a reconfigurable and magnetically responsive evaporator with conic arrays is developed through the controllable and reversible assembly of graphene wrapped Fe3O4 nanoparticles. Different from the traditional structure-rigid evaporation architecture, the deformable and dynamic assemblies could reconfigure themselves both at macroscopic and microscopic scales in response to the variable magnetic field. Thus, the internal water transportation and external vapor diffusion are greatly promoted simultaneously, leading to a 23% higher evaporation rate than that of static counterparts. Further, well-designed hierarchical assembly and dynamic evaporation system can boost the evaporation rate to a record high level of 5.9 kg m-2 h-1. This proof-of-concept work demonstrates a new direction for development of high performance water evaporation system with the ability of dynamic reconfiguration and reassembly.