Project description:Printed organic photodetectors can transform plastic, paper or glass into smart surfaces. This innovative technology is now growing exponentially due to the strong demand in human-machine interfaces. To date, only niche markets are targeted since organic sensors still present reduced performances in comparison with their inorganic counterparts. Here we demonstrate that it is possible to engineer a state-of-the-art organic photodetector approaching the performances of Si-based photodiodes in terms of dark current, responsivity and detectivity. Only three solution-processed layers and two low-temperature annealing steps are needed to achieve the performance that is significantly better than most of the organic photodetectors reported so far. We also perform a long-term ageing study. Lifetimes of over 14,000?hours under continuous operation are more than promising and demonstrate that organic photodetectors can reach a competitive level of stability for successful commercialization of this new and promising technology.
Project description:This study investigates the impact of COVID-19 pandemic on the microstructure of US equity markets. In particular, we explain the liquidity and volatility dynamics via indexes that capture multiple dimensions of the pandemic. Our results suggest that increases in confirmed cases and deaths due to coronavirus are associated with a significant increase in market illiquidity and volatility. Similarly, declining sentiment and the implementations of restrictions and lockdowns contribute to the deterioration of liquidity and stability of markets.
Project description:A dominant view in numerical cognition is that processing the quantity indicated by numbers (e.g. deciding the larger between two numbers such as '12.07' or '15.02') relies on the intraparietal regions (IPS) of the cerebral cortex. However, it remains unclear whether the IPS could play a more general role in numerical cognition, for example in (1) quantity processing even with non-numerical stimuli (e.g. choosing the larger of 'bikini' and 'coat'); and/or (2) conceptual tasks involving numbers beyond those requiring quantity processing (e.g. attributing a summer date to either '12.07' or '15.02'). In this study we applied fMRI-guided TMS to the left and right IPS, while independently manipulating stimulus and task. Our results showed that IPS involvement in numerical cognition is neither stimulus-specific nor specific for conceptual tasks. Thus, quantity judgments with numerical and non-numerical stimuli were equally affected by IPS-TMS, as well as a number conceptual task not requiring quantity comparisons. However, IPS-TMS showed no impairment for perceptual decisions on numbers without any conceptual processing (i.e. colour judgment), nor for conceptual decisions that did not involve quantity or number stimuli (e.g. summer object: 'bikini' or 'coat'?). These results are consistent with proposals that the parietal areas are engaged in the conceptual representation of numbers but they challenge the most common view that number processing is so automatic that the simple presentation of numbers activates the IPS and a sense of magnitude. Rather, our results show that the IPS is only necessary when conceptual operations need to be explicitly oriented to numerical concepts.
Project description:Slippery lubricant-infused surfaces allow easy removal of liquid droplets on surfaces. They consist of textured or porous substrates infiltrated with a chemically compatible lubricant. Capillary forces help to keep the lubricant in place. Slippery surfaces hold promising prospects in applications including drag reduction in pipes or food packages, anticorrosion, anti-biofouling, or anti-icing. However, a critical drawback is that shear forces induced by flow lead to depletion of the lubricant. In this work, a way to overcome the shear-induced lubricant depletion by replenishing the lubricant from the flow of emulsions is presented. The addition of small amounts of positively charged surfactant reduces the charge repulsion between the negatively charged oil droplets contained in the emulsion. Attachment and coalescence of oil droplets from the oil-in-water emulsion at the substrate surface fills the structure with the lubricant. Flow-induced lubrication of textured surfaces can be generalized to a broad range of lubricant-solid combinations using minimal amounts of oil.
Project description:Certain farms in Japan, namely unfertilised farms (UFs), have been able to maintain high productivity for over 40 years without applying fertilisers or composts. This study aimed to characterise the physicochemical, biological and micromorphological properties of soil in UFs compared with control farms in Eniwa and Nariita and to identify characteristics that are associated with crop productivity. In UFs, no plough pan was observed. The thickness of the effective soil depth (ESD) of UFs was greater than that of CFs. The concentrations of soil organic carbon, total nitrogen and nitrate-nitrogen in ESD of UFs were higher than those in ESD of CFs. Soil microstructure observations indicated the strong development of a granular microstructure with large amounts of void space and a high fractal dimension in both surface and subsoil horizons of UFs. Dry yield had a strong correlation with ESD thickness and fractal dimension of voids. Thus, the management of unfertilised cultivation promoted the development of soil aggregation in both A and B horizons. The increase in ESD, soil pore spaces and complexity with the development of subsoil structure improved the productivity of unfertilised cultivation.
Project description:Long term temporal correlations frequently appear at many levels of neural activity. We show that when such correlations appear in isolated neurons, they indicate the existence of slow underlying processes and lead to explicit conditions on the dynamics of these processes. Moreover, although these slow processes can potentially store information for long times, we demonstrate that this does not imply that the neuron possesses a long memory of its input, even if these processes are bidirectionally coupled with neuronal response. We derive these results for a broad class of biophysical neuron models, and then fit a specific model to recent experiments. The model reproduces the experimental results, exhibiting long term (days-long) correlations due to the interaction between slow variables and internal fluctuations. However, its memory of the input decays on a timescale of minutes. We suggest experiments to test these predictions directly.
Project description:We report on the superior electrochemical properties, in-vivo performance and long term stability under electrical stimulation of a new electrode material fabricated from lithographically patterned glassy carbon. For a direct comparison with conventional metal electrodes, similar ultra-flexible, micro-electrocorticography (?-ECoG) arrays with platinum (Pt) or glassy carbon (GC) electrodes were manufactured. The GC microelectrodes have more than 70% wider electrochemical window and 70% higher CTC (charge transfer capacity) than Pt microelectrodes of similar geometry. Moreover, we demonstrate that the GC microelectrodes can withstand at least 5 million pulses at 0.45?mC/cm2 charge density with less than 7.5% impedance change, while the Pt microelectrodes delaminated after 1 million pulses. Additionally, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was selectively electrodeposited on both sets of devices to specifically reduce their impedances for smaller diameters (<60??m). We observed that PEDOT-PSS adhered significantly better to GC than Pt, and allowed drastic reduction of electrode size while maintaining same amount of delivered current. The electrode arrays biocompatibility was demonstrated through in-vitro cell viability experiments, while acute in vivo characterization was performed in rats and showed that GC microelectrode arrays recorded somatosensory evoked potentials (SEP) with an almost twice SNR (signal-to-noise ratio) when compared to the Pt ones.
Project description:MOTIVATION: The functioning of many biological processes depends on the appearance of only a small number of a single molecular species. Additionally, the observation of molecular crowding leads to the insight that even a high number of copies of species do not guarantee their interaction. How single particles contribute to stabilizing biological systems is not well understood yet. Hence, we aim at determining the influence of single molecules on the long-term behaviour of biological systems, i.e. whether they can reach a steady state. RESULTS: We provide theoretical considerations and a tool to analyse Systems Biology Markup Language models for the possibility to stabilize because of the described effects. The theory is an extension of chemical organization theory, which we called discrete chemical organization theory. Furthermore we scanned the BioModels Database for the occurrence of discrete chemical organizations. To exemplify our method, we describe an application to the Template model of the mitotic spindle assembly checkpoint mechanism. AVAILABILITY AND IMPLEMENTATION: http://www.biosys.uni-jena.de/Services.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Project description:Data assessing the long-term bowel dysfunction following low anterior resection is still lacking. The aim of this study is to evaluate late functional results of patients who underwent rectal resection for rectal cancer. This included calculating LARS and Wexner score and identifying possible risk factors of late postoperative bowel disorders.
Project description:Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1?yr) persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the "clustered plasticity hypothesis" which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory.