Unknown

Dataset Information

0

SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards.


ABSTRACT: Cross-pollination can improve fruit yield, fruit size and nutritional quality of many food crops. However, we rarely understand what proportions of the crop result from self- or cross-pollination, how cross-pollination affects crop quality, and how far pollen is transported by pollinators. Management strategies to improve pollination services are consequently not optimal for many crops. We utilised a series of SNP markers, unique for each cultivar of avocado, to quantify proportions of self- and cross-paternity in fruit of Hass avocado at increasing distances from cross-pollen sources. We assessed whether distance from a cross-pollen source determined the proportions of self-pollinated and cross-pollinated fruit, and evaluated how self- and cross-paternity affected fruit size and nutritional quality. Avocado fruit production resulted from both self- and cross-pollination in cultivar Hass in Queensland, Australia. Cross-pollination levels decreased with increasing distance from a cross-pollen source, from 63% in the row adjacent to another cultivar to 25% in the middle of a single-cultivar block, suggesting that pollen transport was limited across orchard rows. Limited pollen transport did not affect fruit size or quality in Hass avocados as xenia effects of a Shepard polliniser on size and nutritional quality were minor.

SUBMITTER: Kamper W 

PROVIDER: S-EPMC8501009 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8624852 | biostudies-literature
| S-EPMC7073328 | biostudies-literature
| S-EPMC4621022 | biostudies-literature
| S-EPMC4449552 | biostudies-literature
| S-EPMC7524719 | biostudies-literature
| S-EPMC54012 | biostudies-other
| S-EPMC1149621 | biostudies-other
| S-EPMC7154534 | biostudies-literature
| S-EPMC6934854 | biostudies-literature
| S-EPMC5117840 | biostudies-literature