Unknown

Dataset Information

0

SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US.


ABSTRACT: Soil moisture plays a key role in controlling land-atmosphere interactions, with implications for water resources, agriculture, climate, and ecosystem dynamics. Although soil moisture varies strongly across the landscape, current monitoring capabilities are limited to coarse-scale satellite retrievals and a few regional in-situ networks. Here, we introduce SMAP-HydroBlocks (SMAP-HB), a high-resolution satellite-based surface soil moisture dataset at an unprecedented 30-m resolution (2015-2019) across the conterminous United States. SMAP-HB was produced by using a scalable cluster-based merging scheme that combines high-resolution land surface modeling, radiative transfer modeling, machine learning, SMAP satellite microwave data, and in-situ observations. We evaluated the resulting dataset over 1,192 observational sites. SMAP-HB performed substantially better than the current state-of-the-art SMAP products, showing a median temporal correlation of 0.73 ± 0.13 and a median Kling-Gupta Efficiency of 0.52 ± 0.20. The largest benefit of SMAP-HB is, however, the high spatial detail and improved representation of the soil moisture spatial variability and spatial accuracy with respect to SMAP products. The SMAP-HB dataset is available via zenodo and at https://waterai.earth/smaphb .

SUBMITTER: Vergopolan N 

PROVIDER: S-EPMC8505542 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US.

Vergopolan Noemi N   Chaney Nathaniel W NW   Pan Ming M   Sheffield Justin J   Beck Hylke E HE   Ferguson Craig R CR   Torres-Rojas Laura L   Sadri Sara S   Wood Eric F EF  

Scientific data 20211011 1


Soil moisture plays a key role in controlling land-atmosphere interactions, with implications for water resources, agriculture, climate, and ecosystem dynamics. Although soil moisture varies strongly across the landscape, current monitoring capabilities are limited to coarse-scale satellite retrievals and a few regional in-situ networks. Here, we introduce SMAP-HydroBlocks (SMAP-HB), a high-resolution satellite-based surface soil moisture dataset at an unprecedented 30-m resolution (2015-2019) a  ...[more]

Similar Datasets

| S-EPMC7402199 | biostudies-literature
| S-EPMC6367487 | biostudies-literature
| S-EPMC7679398 | biostudies-literature
| S-EPMC6179158 | biostudies-literature
| S-EPMC7351107 | biostudies-literature
| S-EPMC7608049 | biostudies-literature
| S-EPMC5744888 | biostudies-literature
| S-EPMC5896568 | biostudies-literature
| S-EPMC7446951 | biostudies-literature
| S-EPMC8989296 | biostudies-literature