Ontology highlight
ABSTRACT: Simple Summary
The Solanaceae plant family has been a good source of natural compounds that can treat several diseases, including cancer. However, the site and mechanism of action of these compounds in cells has not been entirely clear. With ongoing developments in biological science research, it has become possible to study and identify some of the cellular targets. In this review, we assess publications from the last five years and identify research articles that explain how some of these compounds may work against cancer. These studies show that a number of different components or pathways in cells are targeted by these compounds to inhibit cell proliferation. Interestingly, some compounds have multiple targets and may be effective against different types of cancer. This knowledge may allow scientists to design new and more effective anticancer drugs. Abstract
Plants continue to provide unlimited pharmacologically active compounds that can treat various illnesses, including cancer. The Solanaceae family, besides providing economically important food plants, such as potatoes and tomatoes, has been exploited extensively in folk medicine, as it provides an array of bioactive compounds. Many studies have demonstrated the anticancer potency of some of the compounds, but the corresponding molecular targets are not well defined. However, advances in molecular cell biology and in silico modelling have made it possible to dissect some of the underlying mechanisms. By reviewing the literature over the last five years, we provide an update on anticancer mechanisms associated with phytochemicals isolated from species in the Solanaceae plant family. These mechanisms are conveniently grouped into cell cycle arrest, transcription regulation, modulation of autophagy, inhibition of signalling pathways, suppression of metabolic enzymes, and membrane disruption. The majority of the bioactive compounds exert their antiproliferative effects by inhibiting diverse signalling pathways, as well as arresting the cell cycle. Furthermore, some of the phytochemicals are effective against more than one cancer type. Therefore, understanding these mechanisms provides paths for future formulation of novel anticancer drugs, as well as highlighting potential areas of research.
SUBMITTER: Nkwe D
PROVIDER: S-EPMC8507657 | biostudies-literature |
REPOSITORIES: biostudies-literature