Cellulose-Based Films with Ultraviolet Shielding Performance Prepared Directly from Waste Corrugated Pulp.
Ontology highlight
ABSTRACT: As the most important paper packaging materials, corrugated cartons with a tremendous amount of production demonstrate several advantages and have been widely used in daily life. However, waste corrugated cartons (WCCs) are usually recycled and reused to produce new corrugated cartons, and their properties are decreased dramatically after several cycles. Therefore, recycling and converting WCCs into cellulose-based film with high value is attractive and significant. Herein, without any pretreatment, the waste old corrugated cartons were directly dissolved in ionic liquid 1-allyl-3-methylimidazolium chloride, and semitransparent cellulose-based films were successfully fabricated. It was indicated that cellulose-based films displayed better UV-shielding property and hydrophobicity than traditional cellulose films. Interestingly, the cellulose-based films regenerated from deionized water displayed higher tensile strength, elongation at break, and toughness. Their tensile strength could reach 23.16 MPa, exhibiting enormous superiority as wrapping and packaging materials to replace the petrochemical polyethylene membrane (8.95 MPa). Consequently, these renewable, biodegradable, and high-valued cellulose-based films were successfully fabricated to simultaneously realize the valorization of old corrugated cartons and supplement the petrochemical plastics.
SUBMITTER: Xia G
PROVIDER: S-EPMC8512157 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA