Project description:This paper reviews the results from hybrid quantum/classical molecular dynamics simulations of the hydride transfer reaction catalysed by wild-type (WT) and mutant Escherichia coli and WT Bacillus subtilis dihydrofolate reductase (DHFR). Nuclear quantum effects such as zero point energy and hydrogen tunnelling are significant in these reactions and substantially decrease the free energy barrier. The donor-acceptor distance decreases to ca 2.7 A at transition-state configurations to enable the hydride transfer. A network of coupled motions representing conformational changes along the collective reaction coordinate facilitates the hydride transfer reaction by decreasing the donor-acceptor distance and providing a favourable geometric and electrostatic environment. Recent single-molecule experiments confirm that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time-scale of the hydride transfer. Distal mutations can lead to non-local structural changes and significantly impact the probability of sampling configurations conducive to the hydride transfer, thereby altering the free-energy barrier and the rate of hydride transfer. E. coli and B. subtilis DHFR enzymes, which have similar tertiary structures and hydride transfer rates with 44% sequence identity, exhibit both similarities and differences in the equilibrium motions and conformational changes correlated to hydride transfer, suggesting a balance of conservation and flexibility across species.
Project description:Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. The catalytic rate in this system has been found to be significantly affected by mutations far from the site of chemical activity in the enzyme [Rajagopalan, P. T. R, Lutz, S., and Benkovic, S. J. (2002) Biochemistry 41, 12618-12628]. On the basis of extensive computer simulations for wild-type DHFR from Escherichia coli and four mutants (G121S, G121V, M42F, and M42F/G121S), we show that key parameters for catalysis are changed. The parameters we study are relative populations of different conformations sampled and hydrogen bonds. We find that the mutations result in long-range structural perturbations, rationalizing the effects that the mutations have on the kinetics of the enzyme. Such perturbations also provide a rationalization for the reported nonadditivity effect for double mutations. We finally examine the role a structural perturbation will have on the hydride transfer step. On the basis of our new findings, we discuss the role of coupled motions between distant regions in the enzyme, which previously was reported by Radkiewicz and Brooks.
Project description:Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the p-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ?35% were constructed. Only minor effects on k(cat) were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ?30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the p-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-?,?-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The K(i) for this adduct was ?9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis.
Project description:1. Dihydrofolate reductase was purified from Lactobacillus casei MTX/R, and studied on affinity columns containing folic acid and methotrexate. Two forms of the enzyme were interconverted by incubation with substrates. 2. Affinity columns were prepared from agarose activated with cyanogen bromide and coupled with 1,6-diaminohexane. Stable folate derivatives were covalently attached by using a carbodi-imide condensation. 3. Columns containing folic acid retarded but did not retain the enzyme. 4. Methotrexate at pH 6.0 was particularly effective for retention of the enzyme. 5. There is selective loss of one form of the enzyme during affinity chromatography in the absence of added NADPH. This loss is due to conversion into a single enzyme form on the column. 6. NADPH has a dual effect in stabilizing the enzyme and in sensitizing it to inactivation by methotrexate, particularly in the presence of glycine. 7. Protein with affinity for methotrexate, but without dihydrofolate reductase activity, may also be eluted from the columns. 8. In a single-step procedure the enzyme was purified nearly 4000-fold from mammalian skin.
Project description:Enzymes are known to change among several conformational states during turnover. The role of such dynamic structural changes in catalysis is not fully understood. The influence of dynamics in catalysis can be inferred, but not proven, by comparison of equilibrium structures of protein variants and protein-ligand complexes. A more direct way to establish connections between protein dynamics and the catalytic cycle is to probe the kinetics of specific protein motions in comparison to progress along the reaction coordinate. We have examined the enzyme model system dihydrofolate reductase (DHFR) from Escherichia coli with tryptophan fluorescence-probed temperature-jump spectroscopy. We aimed to observe the kinetics of the ligand binding and ligand-induced conformational changes of three DHFR complexes to establish the relationship among these catalytic steps. Surprisingly, in all three complexes, the observed kinetics do not match a simple sequential two-step process. Through analysis of the relationship between ligand concentration and observed rate, we conclude that the observed kinetics correspond to the ligand binding step of the reaction and a noncoupled enzyme conformational change. The kinetics of the conformational change vary with the ligand's identity and presence but do not appear to be directly related to progress along the reaction coordinate. These results emphasize the need for kinetic studies of DHFR with highly specific spectroscopic probes to determine which dynamic events are coupled to the catalytic cycle and which are not.
Project description:To explore how distal mutations affect binding sites and how binding sites in proteins communicate, an ensemble-based model of the native state was used to define the energetic connectivities between the different structural elements of Escherichia coli dihydrofolate reductase. Analysis of this model protein has allowed us to identify two important aspects of intramolecular communication. First, within a protein, pair-wise couplings exist that define the magnitude and extent to which mutational effects propagate from the point of origin. These pair-wise couplings can be identified from a quantity we define as the residue-specific connectivity. Second, in addition to the pair-wise energetic coupling between residues, there exists functional connectivity, which identifies energetic coupling between entire functional elements (i.e., binding sites) and the rest of the protein. Analysis of the energetic couplings provides access to the thermodynamic domain structure in dihydrofolate reductase as well as the susceptibility of the different regions of the protein to both small-scale (e.g., point mutations) and large-scale perturbations (e. g., binding ligand). The results point toward a view of allosterism and signal transduction wherein perturbations do not necessarily propagate through structure via a series of conformational distortions that extend from one active site to another. Instead, the observed behavior is a manifestation of the distribution of states in the ensemble and how the distribution is affected by the perturbation.
Project description:A comprehensive analysis of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase is presented. Hybrid quantum/classical molecular dynamics simulations are combined with a rank correlation analysis method to extract thermally averaged properties that vary along the collective reaction coordinate according to a prescribed target model. Coupled motions correlated to hydride transfer are identified throughout the enzyme. Calculations for wild-type dihydrofolate reductase and a triple mutant, along with the associated single and double mutants, indicate that each enzyme system samples a unique distribution of coupled motions correlated to hydride transfer. These coupled motions provide an explanation for the experimentally measured nonadditivity effects in the hydride transfer rates for these mutants. This analysis illustrates that mutations distal to the active site can introduce nonlocal structural perturbations and significantly impact the catalytic rate by altering the conformational motions of the entire enzyme and the probability of sampling conformations conducive to the catalyzed reaction.
Project description:Isotopic substitution ((15)N, (13)C, (2)H) of a catalytically compromised variant of Escherichia coli dihydrofolate reductase, EcDHFR-N23PP/S148A, has been used to investigate the effect of these mutations on catalysis. The reduction of the rate constant of the chemical step in the EcDHFR-N23PP/S148A catalyzed reaction is essentially a consequence of an increase of the quasi-classical free energy barrier and to a minor extent of an increased number of recrossing trajectories on the transition state dividing surface. Since the variant enzyme is less well set up to catalyze the reaction, a higher degree of active site reorganization is needed to reach the TS. Although millisecond active site motions are lost in the variant, there is greater flexibility on the femtosecond time scale. The "dynamic knockout" EcDHFR-N23PP/S148A is therefore a "dynamic knock-in" at the level of the chemical step, and the increased dynamic coupling to the chemical coordinate is in fact detrimental to catalysis. This finding is most likely applicable not just to hydrogen transfer in EcDHFR but also to other enzymatic systems.
Project description:The relationship between the structures of protein-ligand complexes existing in the crystal and in solution, essential in the case of fragment-based screening by X-ray crystallography (FBS-X), has been often an object of controversy. To address this question, simultaneous co-crystallization and soaking of two inhibitors with different ratios, Fidarestat (FID; K(d) = 6.5 nM) and IDD594 (594; K(d) = 61 nM), which bind to h-aldose reductase (AR), have been performed. The subatomic resolution of the crystal structures allows the differentiation of both inhibitors, even when the structures are almost superposed. We have determined the occupation ratio in solution by mass spectrometry (MS) Occ(FID)/Occ(594) = 2.7 and by X-ray crystallography Occ(FID)/Occ(594) = 0.6. The occupancies in the crystal and in solution differ 4.6 times, implying that ligand binding potency is influenced by crystal contacts. A structural analysis shows that the Loop A (residues 122-130), which is exposed to the solvent, is flexible in solution, and is involved in packing contacts within the crystal. Furthermore, inhibitor 594 contacts the base of Loop A, stabilizing it, while inhibitor FID does not. This is shown by the difference in B-factors of the Loop A between the AR-594 and AR-FID complexes. A stable loop diminishes the entropic energy barrier to binding, favoring 594 versus FID. Therefore, the effect of the crystal environment should be taken into consideration in the X-ray diffraction analysis of ligand binding to proteins. This conclusion highlights the need for additional methodologies in the case of FBS-X to validate this powerful screening technique, which is widely used.
Project description:Correlated networks of amino acids have been proposed to play a fundamental role in allostery and enzyme catalysis. These networks of amino acids can be traced from surface-exposed residues all the way into the active site, and disruption of these networks can decrease enzyme activity. Substitution of the distal Gly121 residue in Escherichia coli dihydrofolate reductase results in an up to 200-fold decrease in the hydride transfer rate despite the fact that the residue is located 15 Å from the active-site center. In this study, nuclear magnetic resonance relaxation experiments are used to demonstrate that dynamics on the picosecond to nanosecond and microsecond to millisecond time scales are changed significantly in the G121V mutant of dihydrofolate reductase. In particular, picosecond to nanosecond time scale dynamics are decreased in the FG loop (containing the mutated residue at position 121) and the neighboring active-site loop (the Met20 loop) in the mutant compared to those of the wild-type enzyme, suggesting that these loops are dynamically coupled. Changes in methyl order parameters reveal a pathway by which dynamic perturbations can be propagated more than 25 Å across the protein from the site of mutation. All of the enzyme complexes, including the model Michaelis complex with folate and nicotinamide adenine dinucleotide phosphate bound, assume an occluded ground-state conformation, and we do not observe sampling of a higher-energy closed conformation by (15)N R2 relaxation dispersion experiments. This is highly significant, because it is only in the closed conformation that the cofactor and substrate reactive centers are positioned for reaction. The mutation also impairs microsecond to millisecond time scale fluctuations that have been implicated in the release of product from the wild-type enzyme. Our results are consistent with an important role for Gly121 in controlling protein dynamics critical for enzyme function and further validate the dynamic energy landscape hypothesis of enzyme catalysis.