Unknown

Dataset Information

0

Chemistrees: Data-Driven Identification of Reaction Pathways via Machine Learning.


ABSTRACT: We propose to analyze molecular dynamics (MD) output via a supervised machine learning (ML) algorithm, the decision tree. The approach aims to identify the predominant geometric features which correlate with trajectories that transition between two arbitrarily defined states. The data-driven algorithm aims to identify these features without the bias of human "chemical intuition". We demonstrate the method by analyzing the proton exchange reactions in formic acid solvated in small water clusters. The simulations were performed with ab initio MD combined with a method to efficiently sample the rare event, path sampling. Our ML analysis identified relevant geometric variables involved in the proton transfer reaction and how they may change as the number of solvating water molecules changes.

SUBMITTER: Roet S 

PROVIDER: S-EPMC8515787 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chemistrees: Data-Driven Identification of Reaction Pathways <i>via</i> Machine Learning.

Roet Sander S   Daub Christopher D CD   Riccardi Enrico E  

Journal of chemical theory and computation 20210924 10


We propose to analyze molecular dynamics (MD) output <i>via</i> a supervised machine learning (ML) algorithm, the decision tree. The approach aims to identify the predominant geometric features which correlate with trajectories that transition between two arbitrarily defined states. The data-driven algorithm aims to identify these features without the bias of human "chemical intuition". We demonstrate the method by analyzing the proton exchange reactions in formic acid solvated in small water cl  ...[more]

Similar Datasets

2025-04-28 | GSE276511 | GEO
| S-EPMC10401178 | biostudies-literature
| S-EPMC9849330 | biostudies-literature
| S-EPMC10349995 | biostudies-literature
| S-EPMC10783149 | biostudies-literature
| S-EPMC7070257 | biostudies-literature
| S-EPMC10985086 | biostudies-literature
| S-EPMC10646978 | biostudies-literature
| S-EPMC7687896 | biostudies-literature
| S-EPMC8820617 | biostudies-literature