Project description:A three-dimensional MIL-100(Fe)/graphene hybrid aerogel (MG-HA) was fabricated via in situ decoration of graphene oxide with MIL-100(Fe) nanoparticles. The resulting MG-HA with interconnected pore structure was applied as both adsorbent and catalyst for the removal of methylene blue (MB) from aqueous solutions. The result shows that the saturation adsorption capacity of the MG-HA was as high as 333.33 mg g-1, exceeding that of both the corresponding pristine graphene aerogel and MIL-100(Fe) nanoparticles. In the presence of hydrogen peroxide, MG-HA further exhibited catalytic degradation ability. The dual functions achieved a synergistic effect leading to the quick and complete removal of MB. The benefit was revealed in the treatment of high concentration of pollutants without leaving secondary pollution. The merit was intuitively demonstrated in the instant removal of MB through a model separation device in comparison with a series of common adsorbents. A feasible mathematic model was built based on the synergistic adsorption/catalysis process, which perfectly fitted the experimental data. A pseudo-second-order adsorption process and pseudo-first-order catalytic degradation kinetics were revealed. Additionally, the MG-HA was able to retain 93.4% of its initial removal efficiency after 5 cycles of application. The macro-material body can be easily separated and reused without a time-consuming and high-cost recycling process.
Project description:Porous organic materials, as a broad class of functional materials, offer a promising route for low-cost purification of contaminated wastewaters. We have synthesized a range of highly cross-linked conjugated porous polyanilines and optimized their porosity and water dispersibility by tuning reactant feed ratios, previously unreported in the synthesis of such networks. To demonstrate their ability to adsorb model dyes used in the textile industry, we exposed the networks to a range of cationic aromatic dyes, leading to absorption capacities of >100 mg/g, reported for the first time with respect to polyaniline networks. The versatility of the networks was further demonstrated by the preparation of gel composites, producing active gels for efficient and facile removal and recycling, ideal for real-world applications. Finally, chemical modifications of the networks were undertaken to target the removal of model anionic organic dye pollutants, showing the wide applicability of our approach.
Project description:In recent years, metal-organic framework (MOF)-based nanofibrous membranes (NFMs) have received extensive attention in the application of water treatment. Hence, it is of great significance to realize a simple and efficient preparation strategy of MOF-based porous NFMs. Herein, we developed a direct in situ formation of MOF/polymer NFMs using an electrospinning method. The porous MOF/polymer NFMs were constructed by interconnecting mesopores in electrospun composite nanofibers using poly(vinylpolypyrrolidone) (PVP) as the sacrificial pore-forming agent. MOF (MIL-88A) particles were formed inside the polyacrylonitrile (PAN)/PVP nanofibers in situ during electrospinning, and the porous MIL-88A/PAN (pMIL-88A/PAN) NFM was obtained after removing PVP by ethanol and water washing. The MOF particles were uniformly distributed throughout the pMIL-88A/PAN NFM, showing a good porous micro-nano morphological structure of the NFM with a surface area of 143.21 m2 g-1, which is conducive to its efficient application in dye adsorption and removal. Specifically, the dye removal efficiencies of the pMIL-88A/PAN NFM for amaranth red, rhodamine B, and acid blue were as high as 99.2, 94.4, and 99.8%, respectively. In addition, the NFM still showed over 80% dye removal efficiencies after five adsorption cycles. The pMIL-88A/PAN NFM also presented high adsorption capacities, fast adsorption kinetics, and high cycling stabilities during the processes of dye adsorption and removal. Overall, this work demonstrates that the in situ electrospun porous MOF/polymer NFMs present promising application potential in water treatment for organic dyestuff removal.
Project description:It is of great significance to develop new materials for efficient capture cationic dyes methylene blue (MB) and malachite green (MG). In this work, a novel triptycene-based porous organic polymer with abundant thiol groups (TPP-SH) was prepared successfully by postmodification with a high surface area and robust triptycene-based porous organic polymer (TPP). The obtained TPP-SH exhibited a high surface area, good porosity, and good thermal stability. In addition, TPP-SH was highly effective at capturing MB and MG from aqueous solution because of the abundant thiols in its hierarchical structure. Under optimal adsorption conditions, the maximum adsorption capacities of MB and MG calculated by the Langmuir model at room temperature were 1146.3 and 689.6 mg g-1, respectively. These values are higher than those of many reported materials. The MB and MG adsorption rates were 0.0154 and 6.69 × 10-4 mg g-1 min-1, respectively. Furthermore, the polymer TPP-SH had a good recycling performance after adsorption-desorption at least five times. Therefore, the TPP-SH exhibited a high adsorption capacity, fast adsorption kinetics, and easy-recycling behavior, providing a new avenue for the preparation of green functionalized adsorbents with good performance for water decontamination.
Project description:The reactions of two cyclic germylene phosphane adducts with monosubstituted acetylenes caused the formation of spirocyclic germanes, which is postulated to occur by double acetylene insertion into germylene attached bonds. Further insertion of the formed cyclic divinylgermylene into transannular Si-Si or Si-Ge bonds provides the spirocyclic germanes. Thermal treatment of two germacyclopropenes, formed by the reaction of the two cyclic germylene phosphane adducts with tolane, also produced spirocyclogermanes. The structures of the latter require, however, a more complicated mechanistic proposal.
Project description:The efficient and straightforward syntheses of silylthioethers and disulfides are presented. The synthetic methodologies are based on new rhodium complexes containing bulky N-heterocyclic carbene (NHC) ligands that turned out to be efficient catalysts in thiol and thiol-silane coupling reactions. These green protocols, which use easily accessible reagents, allow obtaining compounds containing S-Si and S-S bonds in solvent-free conditions. Additionally, preliminary tests on coupling of mono- and octahydro-substituted spherosilicates with selected thiols have proved to be very promising and showed that these catalytic systems can be used for the synthesis of a novel class of functionalized silsesquioxane derivatives.
Project description:In this study, a series of AgCl/ZnO-loaded nanofibrous membranes were prepared using coaxial electrospinning. Their physical and chemical characteristics were evaluated by SEM, TEM, XRD, XPS, IR, PL, and UV-visible spectrometer, and the photocatalytic experiments using methylene blue (MB) as a model pollutant. The formation of AgCl/ZnO heterojunction and the structure of core-shell nanofibers with porous shell layer were confirmed. AgCl/ZnO photocatalysts were also effectively loaded onto the surfaces of the porous core-shell nanofibers. The results of photocatalytic experiments revealed that the AgCl/ZnO (MAgCl:MZnO = 5:5)-loaded nanofibrous membrane achieved a degradation efficiency of 98% in just 70 min and maintained a photocatalytic efficiency exceeding 95% over the first five experimental cycles, which successfully addressed the issues of photocatalytic efficiency loss during the photodegradation of MB with AgCl/ZnO nanoparticles as photocatalyst. The photodegradation mechanism was also researched and proposed.
Project description:A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m(2) g(-1)), excellent magnetic response (14.89 emu g(-1)), and large mesopore volume (0.09 cm(3) g(-1)), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π-π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g(-1) at an initial MB concentration of 30 mg L(-1), which increased to 245 mg g(-1) when the initial MB concentration was 300 mg L(-1). This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles.
Project description:Sulfur polymers produced through 'inverse vulcanization' exhibit various attributes, such as photocatalytic activity and a high capacity to adsorb heavy metals. Nevertheless, there is a lack of research investigating the use of sulfur polymers as materials for the removal of organic contaminants. In this work, porous sulfur polymers (PSPs) were synthesized from elemental sulfur and 1,3-diisopropenylbenzene, with porosity introduced via salt templating. The result is a material that can strongly adsorb and chemically neutralize a model organic contaminant (caffeine). PSPs show adsorption up to 5 times higher than a leading adsorption material (activated carbon). Furthermore, either the adsorption or degradation processes can govern the removal efficiency depending on the synthesis parameters of PSPs. This is the first-ever report demonstrating sulfur polymers as effective materials for removing emerging contaminants from water. The versatile synthesis of sulfur polymers offers variation, which means that there is much more to explore in this exciting research area.
Project description:Removal of toxic dyes from wastewater has become a hot topic in both academic and industrial fields since there is growing concern about the threat of sewage to human health. Herein, we demonstrate that the three-dimensional porous polyacrylamide-phytic acid-polydopamine (termed as PAAM/PA/PDA) hydrogel can be served as reusable adsorbent with high efficiency for either anionic or cationic dyes. Using methyl blue (MB), methylene blue (YMB), methyl violet (MV) and neutral red (NR) as model dyes, we investigate the effect of pH, temperature, dye concentration, and PAAM/PA/PDA hydrogel mass on the adsorption. The experimental maximum adsorption capacities are more than 350.67 mg g-1 for four selected dyes. Adsorption kinetic and thermodynamic analysis suggests that the dyes are adsorbed on the PAAM/PA/PDA hydrogel through the strong π-π stacking and anion-cation interaction, and the adsorption process satisfies a pseudo-second-order model. Furthermore, the free-standing PAAM/PA/PDA hydrogel can be easily removed from water after adsorption process, and regenerated by adjusting solution pH values.