Project description:Hypothermia may attenuate reperfusion injury and thereby improve acute myocardial infarction therapy. Systemic cooling trials failed to reduce infarct size, perhaps because the target temperature was not reached fast enough. The use of selective intracoronary hypothermia combined with intracoronary temperature monitoring allows for titrating to target temperature and optimizing the cooling rate. We aimed to the test the feasibility of intracoronary cooling for controlled, selective myocardial hypothermia in an isolated beating pig heart. In five porcine hearts the left anterior descending artery (LAD) was occluded by an over-the-wire balloon (OTWB). After occlusion, saline at 22°C was infused through the OTWB lumen for 5 minutes into the infarct area at a rate of 30 ml/min. Thereafter the balloon was deflated but infusion continued with saline at 4°C for 5 minutes. Distal coronary temperature was continuously monitored by a pressure/temperature guidewire. Myocardial temperature at several locations in the infarct and control areas was recorded using needle thermistors. In the occlusion phase, coronary temperature decreased by 11.4°C (range 9.4-12.5°C). Myocardial temperature throughout the infarct area decreased by 5.1°C (range 1.8-8.1°C) within three minutes. During the reperfusion phase, coronary temperature decreased by 6.2°C (range 4.1-10.3°C) and myocardial temperature decreased by 4.5°C (range 1.5-7.4°C). Myocardial temperature outside the infarct area was not affected. In the isolated beating pig heart with acute occlusion of the LAD, we were able to rapidly "induce, maintain, and control" a stable intracoronary and myocardial target temperature of at least 4°C below body temperature without side effects and using standard PCI equipment, justifying further studies of this technique in humans.
Project description:BackgroundMild hypothermia (MH) decreases infarct size and mortality in experimental reperfused myocardial infarction, but may potentiate ischaemia-induced left ventricular (LV) diastolic dysfunction.MethodsIn anaesthetized pigs (70 ± 2 kg), polystyrol microspheres (45 μm) were infused repeatedly into the left circumflex artery until cardiac power output decreased >40%. Then, pigs were assigned to normothermia (NT, 38.0°C, n=8) or MH (33.0°C, n=8, intravascular cooling) and followed for 6h (CME 6h). p<0.05 vs baseline, †p<0.05 vs NT.ResultsIn NT, cardiac output (CO) decreased from 6.2 ± 0.3 to 3.4 ± 0.2 l/min, and heart rate increased from 89 ± 4 to 101 ± 6 bpm. LV end-diastolic volume fell from 139 ± 8 to 64 ± 4 ml, while LV ejection fraction remained constant (49 ± 1 vs 53 ± 4%). The corresponding end-diastolic pressure-volume relationship was progressively shifted leftwards, reflecting severe LV diastolic dysfunction. In MH, CO fell to a similar degree. Spontaneous bradycardia compensated for slowed LV relaxation, and the leftward shift of the end-diastolic pressure-volume relationship was less pronounced during MH. MH increased systemic vascular resistance, such that mean aortic pressure remained higher in MH vs NT (69 ± 2† vs 54 ± 4 mm Hg). Mixed venous oxygen saturation at CME 6h was higher in MH than in NT (59 ± 4† vs 42 ± 2%) due to lowered systemic oxygen demand during cooling.ConclusionWe conclude that (i) an acute loss of end-diastolic LV compliance is a major component of acute cardiac pump failure during experimental myocardial infarction, and that (ii) MH does not potentiate this diastolic LV failure, but stabilizes haemodynamics and improves systemic oxygen supply/demand imbalance by reducing demand.
Project description:BackgroundPreclinical data suggest that an acute inflammatory response following myocardial infarction (MI) accelerates systemic atherosclerosis. Using combined positron emission and computed tomography, we investigated whether this phenomenon occurs in humans.Methods and resultsOverall, 40 patients with MI and 40 with stable angina underwent thoracic 18F-fluorodeoxyglucose combined positron emission and computed tomography scan. Radiotracer uptake was measured in aortic atheroma and nonvascular tissue (paraspinal muscle). In 1003 patients enrolled in the Global Registry of Acute Coronary Events, we assessed whether infarct size predicted early (≤30 days) and late (>30 days) recurrent coronary events. Compared with patients with stable angina, patients with MI had higher aortic 18F-fluorodeoxyglucose uptake (tissue-to-background ratio 2.15±0.30 versus 1.84±0.18, P<0.0001) and plasma C-reactive protein concentrations (6.50 [2.00 to 12.75] versus 2.00 [0.50 to 4.00] mg/dL, P=0.0005) despite having similar aortic (P=0.12) and less coronary (P=0.006) atherosclerotic burden and similar paraspinal muscular 18F-fluorodeoxyglucose uptake (P=0.52). Patients with ST-segment elevation MI had larger infarcts (peak plasma troponin 32 300 [10 200 to >50 000] versus 3800 [1000 to 9200] ng/L, P<0.0001) and greater aortic 18F-fluorodeoxyglucose uptake (2.24±0.32 versus 2.02±0.21, P=0.03) than those with non-ST-segment elevation MI. Peak plasma troponin concentrations correlated with aortic 18F-fluorodeoxyglucose uptake (r=0.43, P=0.01) and, on multivariate analysis, independently predicted early (tertile 3 versus tertile 1: relative risk 4.40 [95% CI 1.90 to 10.19], P=0.001), but not late, recurrent MI.ConclusionsThe presence and extent of MI is associated with increased aortic atherosclerotic inflammation and early recurrent MI. This finding supports the hypothesis that acute MI exacerbates systemic atherosclerotic inflammation and remote plaque destabilization: MI begets MI.Clinical trial registrationURL: https://www.clinicaltrials.gov. Unique identifier: NCT01749254.
Project description:OBJECTIVES:The study investigated whether a dose response exists between myocardial salvage and the depth of therapeutic hypothermia. BACKGROUND:Cardiac protection from mild hypothermia during acute myocardial infarction (AMI) has yielded equivocal clinical trial results. Rapid, deeper hypothermia may improve myocardial salvage. METHODS:Swine (n = 24) undergoing AMI were assigned to 3 reperfusion groups: normothermia (38°C) and mild (35°C) and moderate (32°C) hypothermia. One-hour anterior myocardial ischemia was followed by rapid endovascular cooling to target reperfusion temperature. Cooling began 30 min before reperfusion. Target temperature was reached before reperfusion and was maintained for 60 min. Infarct size (IS) was assessed on day 6 using cardiac magnetic resonance, triphenyl tetrazolium chloride, and histopathology. RESULTS:Triphenyl tetrazolium chloride area at risk (AAR) was equivalent in all groups (p = 0.2), but 32°C exhibited 77% and 91% reductions in IS size per AAR compared with 35°C and 38°C, respectively (AAR: 38°C, 45 ± 12%; 35°C, 17 ± 10%; 32°C, 4 ± 4%; p < 0.001) and comparable reductions per LV mass (LV mass: 38°C, 14 ± 5%; 35°C, 5 ± 3%; 32°C 1 ± 1%; p < 0.001). Importantly, 32°C showed a lower IS AAR (p = 0.013) and increased immunohistochemical granulation tissue versus 35°C, indicating higher tissue salvage. Delayed-enhancement cardiac magnetic resonance IS LV also showed marked reduction at 32°C (38°C: 10 ± 4%, p < 0.001; 35°C: 8 ± 3%; 32°C: 3 ± 2%, p < 0.001). Cardiac output on day 6 was only preserved at 32°C (reduction in cardiac output: 38°C, -29 ± 19%, p = 0.041; 35°C: -17 ± 33%; 32°C: -1 ± 28%, p = 0.041). Using linear regression, the predicted IS reduction was 6.7% (AAR) and 2.1% (LV) per every 1°C reperfusion temperature decrease. CONCLUSIONS:Moderate (32°C) therapeutic hypothermia demonstrated superior and near-complete cardioprotection compared with 35°C and control, warranting further investigation into clinical applications.
Project description:Background and Rationale: Mild therapeutic hypothermia (MTH) is a concept to reduce infarct size and improve outcome after ST-segment elevation myocardial infarction (STEMI). In the STATIM trial, we investigated MTH as an additional therapy for STEMI patients. In the intention-to-treat set, 101 patients were included. No difference in primary and secondary endpoints measured by cardiac magnetic resonance imaging was found. Platelet activation and plasmatic coagulation are key in the pathophysiology of STEMI. In the present study, we investigated the effect of MTH on primary and secondary hemostasis in STEMI patients. Methods and Results: Platelet function and morphology were assessed by routine blood count, aggregometry testing, and flow cytometry. Soluble platelet markers were determined by enzyme-linked immunosorbent assay (ELISA) testing. Plasmatic coagulation was measured throughout the study. Platelet count remained unchanged, irrespective of treatment, whereas platelet size decreased in both patient groups. Platelet aggregometry indicated increased platelet reactivity in the MTH group. Furthermore, higher adenosine diphosphate (ADP) plasma levels were found in MTH patients. Expression of glycoprotein IIb/IIIa was increased on platelets of STEMI patients treated with MTH. Lower patient temperatures correlated with longer clotting times and resulted in reduced pH. Lower pH values were positively correlated with longer clotting times. Conclusion: Present data indicate longer clotting times and higher platelet reactivity in STEMI patients treated with MTH. These changes did not correspond to clinical bleeding events or larger infarct size.
Project description:BackgroundIn South Korea, the number of people with dementia is rising at a worrisome rate, and many of them also have acute myocardial infarction (AMI), a disease with a high mortality rate.HypothesisWe speculated that dementia and drug compliance have significant impact on the mortality of patients with AMI.MethodsThe study derived data from the National Health Insurance Service-Senior for a retrospective cohort study. The total number of patients diagnosed with AMI for the first time between 2007 and 2013 was 16 835, among whom 2021 had dementia. Medication possession ratio (MPR) was used to assess medication adherence.ResultsAMI patients with dementia had unfavorable baseline characteristics; they had significantly higher risk of all-cause mortality (hazard ratio [HR]: 2.49; 95% confidence interval [CI]: 2.34-2.66; p < .001) and lower MPR (aspirin: 21.9% vs. 42.8%; p < .001). AMI patients were stratified by presence of dementia and medication adherence, and the survival rate was the highest among those with no dementia and good adherence, followed by those with no dementia and poor adherence, those with dementia and good adherence, and those with dementia and poor adherence. The multivariable analysis revealed that dementia (HR: 1.64; 95% CI: 1.53-1.75; p < .001) and poor adherence to medication (HR: 1.60; 95% CI: 1.49-1.71; p < .001) had a significant association with all-cause mortality in AMI patients.ConclusionsAMI patients with dementia have a higher mortality rate. Their prognosis is negatively affected by their poorer medication adherence than patients without dementia.
Project description:Primary percutaneous coronary intervention is the preferred reperfusion strategy for patients presenting with ST-segment elevation myocardial infarction (STEMI). First generation drug-eluting stents (DES), (sirolimus drug-eluting stents and paclitaxel drug-eluting stents), reduce the risk of restenosis and target vessel revascularization compared to bare metal stents. However, stent thrombosis emerged as a major safety concern with first generation DES. In response to these safety issues, second generation DES were developed with different drugs, improved stent platforms and more biocompatible durable or bioabsorbable polymeric coating. This article presents an overview of safety and efficacy of the first and second generation DES in STEMI.
Project description:Highlights•The mechanical complications of acute myocardial infarction (AMI) can be catastrophic.•A Gerbode type defect after AMI is rare.•Surgery is the mainstay of treatment, but percutaneous options are available.•Gerbode defects can be congenital or acquired and can be closed percutaneously.•Echocardiography reliably evaluates the mechanical complications of AMI.
Project description:Analysis of peripheral blood specimens from patients with acute myocardial infarction (AMI). Results provide insight into molecular mechanisms associated with AMI.