Unknown

Dataset Information

0

Unsupervised learning predicts human perception and misperception of gloss.


ABSTRACT: Reflectance, lighting and geometry combine in complex ways to create images. How do we disentangle these to perceive individual properties, such as surface glossiness? We suggest that brains disentangle properties by learning to model statistical structure in proximal images. To test this hypothesis, we trained unsupervised generative neural networks on renderings of glossy surfaces and compared their representations with human gloss judgements. The networks spontaneously cluster images according to distal properties such as reflectance and illumination, despite receiving no explicit information about these properties. Intriguingly, the resulting representations also predict the specific patterns of 'successes' and 'errors' in human perception. Linearly decoding specular reflectance from the model's internal code predicts human gloss perception better than ground truth, supervised networks or control models, and it predicts, on an image-by-image basis, illusions of gloss perception caused by interactions between material, shape and lighting. Unsupervised learning may underlie many perceptual dimensions in vision and beyond.

SUBMITTER: Storrs KR 

PROVIDER: S-EPMC8526360 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unsupervised learning predicts human perception and misperception of gloss.

Storrs Katherine R KR   Anderson Barton L BL   Fleming Roland W RW  

Nature human behaviour 20210506 10


Reflectance, lighting and geometry combine in complex ways to create images. How do we disentangle these to perceive individual properties, such as surface glossiness? We suggest that brains disentangle properties by learning to model statistical structure in proximal images. To test this hypothesis, we trained unsupervised generative neural networks on renderings of glossy surfaces and compared their representations with human gloss judgements. The networks spontaneously cluster images accordin  ...[more]

Similar Datasets

| S-EPMC5748181 | biostudies-literature
| S-EPMC8390742 | biostudies-literature
| S-EPMC6688857 | biostudies-literature
| S-EPMC5806585 | biostudies-literature
| S-EPMC8626854 | biostudies-literature
| S-EPMC4186845 | biostudies-literature
| S-EPMC3716393 | biostudies-literature
| S-EPMC1187953 | biostudies-literature
| EMPIAR-10069 | biostudies-other
| S-EPMC6874617 | biostudies-literature