Project description:BackgroundPatients treated with anti-CD20 therapy are particularly at risk of developing severe COVID-19, however little is known regarding COVID-19 vaccine effectiveness in this population.MethodsThis prospective observational cohort study assesses humoral and T-cell responses after vaccination with 2 doses of mRNA-based COVID-19 vaccines in patients treated with rituximab for rheumatic diseases or ocrelizumab for multiple sclerosis (n=37), compared to immunocompetent individuals (n=22).ResultsSARS-CoV-2-specific antibodies were detectable in only 69.4% of patients and at levels that were significantly lower compared to controls who all seroconverted. In contrast to antibodies, Spike (S)-specific CD4+ T cells were equally detected in immunocompetent and anti-CD20 treated patients (85-90%) and mostly of a Th1 phenotype. Response rates of S-specific CD8 + T cells were higher in ocrelizumab (96.2%) and rituximab-treated patients (81.8%) as compared to controls (66.7%). S-specific CD4 + and CD8 + T cells were polyfunctional but expressed more activation markers in patients than in controls. During follow-up, three MS patients without SARS-CoV-2-specific antibody response had a mild breakthrough infection. One of them had no detectable S-specific T cells after vaccination.ConclusionsOur study suggests that patients on anti-CD20 treatment are able to mount potent T-cell responses to mRNA COVID-19 vaccines, despite impaired humoral responses. This could play an important role in the reduction of complications of severe COVID-19.
Project description:SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.
Project description:Interim immunogenicity and efficacy data for the Ad26.COV2.S vaccine for COVID-19 have recently been reported 1-3 . We describe here the 8-month durability of humoral and cellular immune responses in 20 individuals who received one or two doses of 5Ã-10 10 vp or 10 11 vp Ad26.COV2.S and in 5 participants who received placebo 2 . We evaluated antibody and T cell responses on day 239, which was 8 months after the single-shot vaccine regimen (N=10) or 6 months after the two-shot vaccine regimen (N=10), although the present study was not powered to compare these regimens 3 . We also report neutralizing antibody responses against the parental SARS-CoV-2 WA1/2020 strain as well as against the SARS-CoV-2 variants D614G, B.1.1.7 (alpha), B.1.617.1 (kappa), B.1.617.2 (delta), P.1 (gamma), B.1.429 (epsilon), and B.1.351 (beta).
Project description:Two dose mRNA vaccination provides excellent protection against SARS-CoV-2. However, there are few data on vaccine efficacy in elderly individuals above the age of 801. Additionally, new variants of concern (VOC) with reduced sensitivity to neutralising antibodies have raised fears for vulnerable groups. Here we assessed humoral and cellular immune responses following vaccination with mRNA vaccine BNT162b22 in elderly participants prospectively recruited from the community and younger health care workers. Median age was 72 years and 51% were females amongst 140 participants. Neutralising antibody responses after the first vaccine dose diminished with increasing age, with a steep drop in participants over 80 years old. Sera from participants below and above 80 showed significantly lower neutralisation potency against B.1.1.7, B.1.351 and P.1. variants of concern as compared to wild type. Those over 80 were more likely to lack any neutralisation against VOC compared younger participants following first dose. Binding IgG and IgA antibodies were lower in the elderly, as was the frequency of SARS-CoV-2 Spike specific B- cells. We observed a trend towards lower somatic hypermutation in participants with suboptimal neutralisation, and elderly participants demonstrated clear reduction in class switched somatic hypermutation, driven by the IgA1/2 isotype. SARS-CoV-2 Spike specific T- cell IFN?? and IL-2 responses were secreted primarily by CD4 T cells, and impaired in the older age group. We conclude that the elderly are a high risk population that warrant specific measures in order to mitigate against vaccine failure, particularly where variants of concern are circulating. Specifically, the dosing interval should not be extended in this group.
Project description:Understanding immune memory to COVID-19 vaccines is critical for the design and optimal vaccination schedule for curbing the COVID-19 pandemic. Here, we assessed the status of humoral and cellular immune responses at 1, 3, 6, and 12 months after two-dose CoronaVac vaccination. A total of 150 participants were enrolled, and 136 of them completed the study through the 12-month endpoint. Our results show that, at 1 month after vaccination, both binding and neutralizing antibodies could be detected; the seropositive rate of binding antibodies and seroconversion rate of neutralizing antibodies were 99% and 50%, respectively. From 3 to 12 months, the binding and neutralizing antibodies declined over time. At 12 months, the binding and neutralizing antibodies were still detectable and significantly higher than the baseline. Gamma interferon (IFN-γ) and interleukin 2 (IL-2) secretion specifically induced by the receptor-binding domain (RBD) persisted at high levels until 6 months and could be observed at 12 months, while the levels of IL-5 and granzyme B (GzmB) were hardly detected, demonstrating a Th1-biased response. In addition, specific CD4+ T central memory (TCM), CD4+ effector memory (TEM), CD8+ TEM, and CD8+ terminal effector (TE) cells were all detectable and functional up to 12 months after the second dose, as the cells produced IFN-γ, IL-2, and GzmB in response to stimulation of SARS-CoV-2 RBD. Our work provides evidence that CoronaVac induced not only detectable binding and neutralizing antibody responses, but also functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells for up to 12 months. IMPORTANCE CoronaVac is an inactivated vaccine containing whole-virion SARS-CoV-2, which has been approved in 43 countries for emergency use as of 26 November 2021. However, the long-term immune persistence of the CoronaVac vaccine is still unknown. Here, we reported the status of the persistence of antibodies and cellular responses within 12 months after two doses of CoronaVac. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.
Project description:BackgroundAnti-CD20 therapies induce pronounced B-cell depletion and blunt humoral responses to vaccines. Recovery kinetics of anti-CD20 therapy-mediated cellular and humoral effects in people with multiple sclerosis (pwMS) are poorly defined.ObjectiveTo investigate the duration of the anti-CD20 treatment-induced effects on humoral responses to COVID-19 vaccines.MethodsThis retrospective observational study included pwMS who had discontinued anti-CD20 therapy for ⩾12 months and remained without immunomodulation. We retrieved demographics and laboratory parameters including B-cell counts and immunoglobulin (IgG, IgM, IgA) levels prior to anti-CD20 commencement (baseline) and longitudinally after anti-CD20 treatment discontinuation from electronic medical records. Humoral responses to SARS-CoV-2 vaccines were compared with a population of 11 pwMS with ongoing anti-CD20 medication (control cohort).ResultsA total of 24 pwMS had discontinued anti-CD20 therapy for a median of 34 months (range: 16-38 months). Antibody responses to COVID-19 vaccines were available in 17 (71%). Most individuals (n = 15, 88%) elicited a measurable antibody response [mean: 774 BAU/ml (±SD 1283 BAU/ml)] to SARS-CoV-2 immunization on average 22 months (range: 10-30 months) from the last anti-CD20 infusion, which was higher compared with the population with ongoing anti-CD20 therapy (n = 11, mean: 12.36 ± SD 11.94 BAU/ml; p < 0.00001). Significantly increased antibody levels compared with the control cohort were found among pwMS who were vaccinated >18 months after treatment discontinuation (19-24 months: n = 2, p = 0.013; 25-36 months: n = 9; p < 0.001). The interindividual kinetics for B-cell reconstitution were heterogeneous and mean B-cell counts approached normal ranges 18 months after treatment discontinuation. There was no correlation of B-cell repopulation and vaccine responses. Mean total IgG, IgM, and IgA levels remained within the reference range.ConclusionAnti-CD20-induced inhibition of humoral responses to COVID-19 vaccines is transient and antibody production was more pronounced >18 months after anti-CD20 treatment discontinuation. The immunological effect on B-cell counts appears to wane by the same time.
Project description:Background and objectivesPatients receiving hemodialysis are at high risk for both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and severe coronavirus disease 2019. A lifesaving vaccine is available, but sensitivity to vaccines is generally lower in patients on dialysis. Little is yet known about antibody responses after coronavirus disease 2019 (COVID-19) vaccination in this vulnerable group.Design, setting, participants, and measurementsIn this prospective single-center study, we included 22 patients on dialysis and 46 healthy controls from Heidelberg University Hospital between December 2020 and February 2021. We measured anti-S1 IgG with a threshold index for detection greater than one, neutralizing antibodies with a threshold for viral neutralization of ≥30%, and antibodies against different SARS-CoV2 fragments 17-22 days after the first dose and 18-22 days after the second dose of the mRNA vaccine BNT162b2.ResultsAfter the first vaccine dose, four of 22 (18%) patients on dialysis compared with 43 of 46 (93%) healthy controls developed positive anti-S1 IgG, with a median anti-S1 IgG index of 0.2 (interquartile range, 0.1-0.7) compared with nine (interquartile range, 4-16), respectively. SARS-CoV2 neutralizing antibodies exceeded the threshold for neutralization in four of 22 (18%) patients on dialysis compared with 43 of 46 (93%) healthy controls, with a median percent inhibition of 11 (interquartile range, 3-24) compared with 65 (interquartile range, 49-75), respectively. After the second dose, 14 of 17 (82%) patients on dialysis developed neutralizing antibodies exceeding the threshold for viral neutralization and antibodies against the receptor binding S1 domain of the spike protein, compared with 46 of 46 (100%) healthy controls, respectively. The median percent inhibition was 51 (interquartile range, 32-86) compared with 98 (interquartile range, 97-98) in healthy controls.ConclusionsPatients receiving long-term hemodialysis show a reduced antibody response to the first and second doses of the mRNA vaccine BNT162b2. The majority (82%) develop neutralizing antibodies after the second dose but at lower levels than healthy controls.
Project description:We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.