Unknown

Dataset Information

0

Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization.


ABSTRACT: Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving regioselective surface modification of C6-OH, which can be reverted using mild post-treatments. No polymer degradation, cross-linking, nor changes in crystallinity occur under the mild processing conditions, yielding cellulose nanofibrils bearing carboxyl moieties, which can be removed by saponification. The latter offers a significant opportunity in the reconstitution of the chemical and structural interfaces associated with the native states. Consequently, 3D structuring of native elementary cellulose nanofibrils is made possible with the same supramolecular features as the biosynthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.

SUBMITTER: Beaumont M 

PROVIDER: S-EPMC8532154 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization.

Beaumont Marco M   Tardy Blaise L BL   Reyes Guillermo G   Koso Tetyana V TV   Schaubmayr Elisabeth E   Jusner Paul P   King Alistair W T AWT   Dagastine Raymond R RR   Potthast Antje A   Rojas Orlando J OJ   Rosenau Thomas T  

Journal of the American Chemical Society 20211007 41


Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with <i>N</i>-succinylimidazole, achieving regioselective sur  ...[more]

Similar Datasets

| S-EPMC7424572 | biostudies-literature
| S-EPMC8925132 | biostudies-literature
| S-EPMC6217907 | biostudies-literature
| S-EPMC6749602 | biostudies-literature
| S-EPMC9290444 | biostudies-literature
| S-EPMC9278333 | biostudies-literature
| S-EPMC10049993 | biostudies-literature
| S-EPMC8452180 | biostudies-literature
| S-EPMC9585631 | biostudies-literature
| S-EPMC6680576 | biostudies-literature