Unknown

Dataset Information

0

Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy.


ABSTRACT: SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects.

SUBMITTER: Bojkova D 

PROVIDER: S-EPMC8540749 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications


SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this stud  ...[more]

Similar Datasets

| S-EPMC6289167 | biostudies-literature
| S-EPMC6736310 | biostudies-literature
| S-EPMC8930976 | biostudies-literature
| S-EPMC9267222 | biostudies-literature
| S-EPMC2918918 | biostudies-other
| S-EPMC10569227 | biostudies-literature
| S-EPMC5031559 | biostudies-literature
2016-08-18 | GSE74439 | GEO
| S-EPMC4917655 | biostudies-literature
| S-EPMC10137209 | biostudies-literature