Unknown

Dataset Information

0

Development of whole-cell catalyst system for sulfide biotreatment based on the engineered haloalkaliphilic bacterium


ABSTRACT: Microorganisms play an essential role in sulfide removal. Alkaline absorption solution facilitates the sulfide’s dissolution and oxidative degradation, so haloalkaliphile is a prospective source for environmental-friendly and cost-effective biodesulfurization. In this research, 484 sulfide oxidation genes were identified from the metagenomes of the soda-saline lakes and a haloalkaliphilic heterotrophic bacterium Halomonas salifodinae IM328 (=CGMCC 22183) was isolated from the same habitat as the host for expression of a representative sequence. The genetic manipulation was successfully achieved through the conjugation transformation method, and sulfide: quinone oxidoreductase gene (sqr) was expressed via pBBR1MCS derivative plasmid. Furthermore, a whole-cell catalyst system was developed by using the engineered strain that exhibited a higher rate of sulfide oxidation under the optimal alkaline pH of 9.0. The whole-cell catalyst could be recycled six times to maintain the sulfide oxidation rates from 41.451 to 80.216 µmol·min−1·g−1 dry cell mass. To summarize, a whole-cell catalyst system based on the engineered haloalkaliphilic bacterium is potentiated to be applied in the sulfide treatment at a reduced cost.

Supplementary Information

The online version contains supplementary material available at 10.1186/s13568-021-01302-9.

SUBMITTER: Zhang M 

PROVIDER: S-EPMC8542531 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6245092 | biostudies-literature
| S-EPMC3256673 | biostudies-literature
| S-EPMC3133330 | biostudies-literature
| S-EPMC6357142 | biostudies-literature
| S-EPMC5287398 | biostudies-literature
| S-EPMC4624188 | biostudies-literature
| S-EPMC4579030 | biostudies-literature
| S-EPMC3216623 | biostudies-literature
| S-EPMC5947643 | biostudies-literature
| S-EPMC6763594 | biostudies-literature