Project description:The production of hydrogen at a large scale by the environmentally-friendly electrolysis process is currently hampered by the slow kinetics of the oxygen evolution reaction (OER). We report a solid electrocatalyst α-Li2IrO3 which upon oxidation/delithiation chemically reacts with water to form a hydrated birnessite phase, the OER activity of which is five times greater than its non-reacted counterpart. This reaction enlists a bulk redox process during which hydrated potassium ions from the alkaline electrolyte are inserted into the structure while water is oxidized and oxygen evolved. This singular charge balance process for which the electrocatalyst is solid but the reaction is homogeneous in nature allows stabilizing the surface of the catalyst while ensuring stable OER performances, thus breaking the activity/stability tradeoff normally encountered for OER catalysts.
Project description:Metal-organic frameworks (MOFs) with special morphologies provide the geometric morphology and composition basis for the construction of platforms with excellent catalytic activity. In this work, cobalt-cerium composite oxide hollow dodecahedrons (Co/Cex-COHDs) with controllable morphology and tunable composition are successfully prepared via a high-temperature pyrolysis strategy using Co/Ce-MOFs as self-sacrificial templates. The construction of the hollow structure can expose a larger surface area to provide abundant active sites and pores to facilitate the diffusion of substances. The formation and optimization of phase interface between Co3O4 and CeO2 regulate the electronic structure of the catalytic site and form a fast channel favorable to electron transport, thereby enhancing the electrocatalytic oxygen evolution activity. Based on the above advantages, the optimized Co/Ce0.2-COHDs obtained an enhanced oxygen evolution reaction (OER) performance.
Project description:The oxygen evolution reaction that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal-air batteries and direct solar water splitting. Cost-efficient ABO3 perovskites have been studied extensively because of their high activity for the oxygen evolution reaction; however, they lack stability, and an effective solution to this problem has not yet been demonstrated. Here we report that the Fe(4+)-based quadruple perovskite CaCu3Fe4O12 has high activity, which is comparable to or exceeding those of state-of-the-art catalysts such as Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) and the gold standard RuO2. The covalent bonding network incorporating multiple Cu(2+) and Fe(4+) transition metal ions significantly enhances the structural stability of CaCu3Fe4O12, which is key to achieving highly active long-life catalysts.
Project description:Fe was added to bismuth oxychloride (BiOCl) to improve its oxygen evolution reaction(OER) catalytic activity. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), EDS, and X-ray photoelectron spectroscopy (XPS) were used to analyze the material that was produced. Many electrochemical techniques, including linear sweep voltammetry (LSV), Mott Schottky, and electrochemical impedance spectroscopy (EIS), were used to conduct the electrochemical studies of Fe doped BiOCl. Fe doped BiOCl exhibited enhanced catalytic performance compared to pristine BiOCl. The best performance was observed for 0.75 M Fe doped BiOCl sample. It recorded lowest overpotential of 354 mV @ 10 mA cm-2 and Tafel slope of 167 mV dec-1. The synergistic effect of Fe doping from structural, chemical and catalytic perspective has been analyzed and presented.
Project description:The production of molecular hydrogen by catalyzing water splitting is central to achieving the decarbonization of sustainable fuels and chemical transformations. In this work, a series of structure-making/breaking cations in the electrolyte were investigated as spectator cations in hydrogen evolution and oxidation reactions (HER/HOR) in the pH range of 1 to 14, whose kinetics was found to be altered by up to 2 orders of magnitude by these cations. The exchange current density of HER/HOR was shown to increase with greater structure-making tendency of cations in the order of Cs+ < Rb+ < K+ < Na+ < Li+, which was accompanied by decreasing reorganization energy from the Marcus-Hush-Chidsey formalism and increasing reaction entropy. Invoking the Born model of reorganization energy and reaction entropy, the static dielectric constant of the electrolyte at the electrified interface was found to be significantly lower than that of bulk, decreasing with the structure-making tendency of cations at the negatively charged Pt surface. The physical origin of cation-dependent HER/HOR kinetics can be rationalized by an increase in concentration of cations on the negatively charged Pt surface, altering the interfacial water structure and the H-bonding network, which is supported by classical molecular dynamics simulation and surface-enhanced infrared absorption spectroscopy. This work highlights immense opportunities to control the reaction rates by tuning interfacial structures of cation and solvents.
Project description:The development of efficient acidic water electrolyzers relies on understanding dynamic changes of the Ir-based catalytic surfaces during the oxygen evolution reaction (OER). Such changes include degradation, oxidation, and amorphization processes, each of which somehow affects the material's catalytic performance and durability. Some mechanisms involve the release of oxygen atoms from the oxide's lattice, the extent of which is determined by the structure of the catalyst. While the stability of hydrous Ir oxides suffers from the active participation of lattice oxygen atoms in the OER, rutile IrO2 is more stable and the lattice oxygen involvement is still under debate due to the insufficient sensitivity of commonly used online electrochemical mass spectrometry. Here, we revisit the case of rutile IrO2 at the atomic scale by a combination of isotope labeling and atom probe tomography and reveal the exchange of oxygen atoms between the oxide lattice and water. Our approach enables direct visualization of the electrochemically active volume of the catalysts and allows for the estimation of an oxygen exchange rate during the OER that is discussed in view of surface restructuring and subsequent degradation. Our work presents an unprecedented opportunity to quantitatively assess the exchange of surface species during an electrochemical reaction, relevant for the optimization of the long-term stability of catalytic systems.
Project description:The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons' transfer and the generation of triplet state O2 from singlet state species (OH- or H2O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that the spin polarization occurs at the first electron transfer step in OER, where coherent spin exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with fast kinetics, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O2. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.
Project description:Enhancing the participation of the lattice oxygen mechanism (LOM) in several perovskites to significantly boost the oxygen evolution reaction (OER) is daunting. With the rapid decline in fossil fuels, energy research is turning toward water splitting to produce usable hydrogen by significantly reducing overpotential for other half-cells' OER. Recent studies have shown that in addition to the conventional adsorbate evolution mechanism (AEM), participation of LOM can overcome their prevalent scaling relationship limitations. Here, we report the acid treatment strategy and bypass the cation/anion doping strategy to significantly enhance LOM participation. Our perovskite demonstrated a current density of 10 mA cm-2 at an overpotential of 380 mV and a low Tafel slope (65 mV dec-1) much lower than IrO2 (73 mV dec-1). We propose that the presence of nitric acid-induced defects regulates the electronic structure and thereby lowers oxygen binding energy, allowing enhanced LOM participation to boost OER significantly.
Project description:The preparation of graphene materials from biomass resources is still a challenge, even more so if they are going to be employed as supports for electrocatalysts for water splitting. Herein, we describe the preparation and characterization of graphene oxides (GOs) from solid macroalgae waste obtained after processing an agar-agar residue. The structural and morphological characterization of the obtained GO confirm the presence of a lamellar material that is composed of few layers with an increased number of heteroatoms (including nitrogen) if compared with those observed in a GO obtained from graphite (reference). Three-dimensional electrodes were prepared from these GOs by depositing them onto a fibrous carbon paper, followed by electrodeposition of the catalyst, NiFe. The electrocatalytic performance of these hybrid systems for the oxygen evolution reaction (OER) showed a proactive effect of both graphene materials toward catalysis. Moreover, the electrode prepared from the algae-based graphene showed the highest electrocatalytic activity. This fact could be explained by the different structure of the algae-based graphene which, due to differences in the nucleation growth patterns and electroactive sites developed during the electrodeposition process, produced more reactive NiFe species (higher oxidation state).
Project description:The understanding of fundamental atomic-level processes often requires well-defined model systems. The oxygen atom transfer from CO2 to a transition metal cation in the gas phase presents such a model system. We investigate the reaction of Ta+ + CO2 for which the formation of TaO+ is highly efficient and attributed to multistate reactivity. Here, we study the atomistic dynamics of the oxygen atom transfer reaction by recording experimental energy and angle differential cross sections by crossed beam velocity map imaging supported by ab initio quantum chemical calculations. Product ion velocity distributions are dominated by signatures for indirect dynamics, despite the reaction being highly exothermic. Product kinetic energy distributions show little dependence on additional collision energy even with only four atoms involved, which hints at dynamical trapping behind a submerged barrier.