Project description:CAR T cells have shown clinical efficacy for acute lymphoblastic leukemia, but this therapy has not been effective for acute myeloid leukemia (AML), and other treatment options are needed. Theoretically, CAR-NK cells have a more favorable toxicity profile compared to CAR T cells, especially in avoiding adverse effects such as cytokine release syndrome. However, the clinical evidence for this has not yet been reported. In the current study, we tested the safety of CD33-CAR NK cells in patients with relapsed and refractory AML. At doses up to 5 × 109 (5 billion) cells per patient, no significant adverse effects were observed. CAR NK-92 cells can be produced at much lower cost compared to CAR T cells, and we believe after being optimized, they will be widely accessible for the treatment of cancer.
Project description:We conducted a clinical trial to assess the feasibility and efficacy of CD33-directed chimeric antigen receptor-modified T cells (CART-33) for the treatment of refractory acute myeloid leukemia (AML). A 41-year-old male patient with AML was enrolled and received a total of 1.12 × 10(9) autologous CART-33 cells, of which ~38% were transduced with CAR. The CART-33 infusion alone induced rigorous chills and fevers; drastic fluctuations of his preexisting pancytopenia; elevated serum cytokine levels, including interleukin (IL)-6, IL-8, tumor necrosis factor-α, and interferon-γ; slight transient hyperbilirubinemia within 2 weeks; a subsequent intermittent moderate fever; and reversed fluctuation of the pancytopenia. A marked decrease of blasts in the bone marrow was observed on examination 2 weeks after therapy, and there was a gradual increase until florid disease progression occurred at 9 weeks after the cell infusion. These observations warrant further research on CART-33 treatment in refractory AML and may spur efforts to extend the CART-33-induced tumor burden to the preparation of other intensive strategies, such as hematopoietic stem cell transplantation. This study is registered at www.ClinicalTrials.gov as NCT01864902.
Project description:Acute myeloid leukemia (AML) is a malignant disorder derived from neoplastic myeloid progenitor cells characterized by abnormal proliferation and differentiation. Although novel therapeutics have recently been introduced, AML remains a therapeutic challenge with insufficient cure rates. In the last years, immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced, which showed outstanding clinical activity against B-cell malignancies including acute lymphoblastic leukemia (ALL). However, the application of CAR-T cells appears to be challenging due to the enormous molecular heterogeneity of the disease and potential long-term suppression of hematopoiesis. Here we report on the generation of CD33-targeted CAR-modified natural killer (NK) cells by transduction of blood-derived primary NK cells using baboon envelope pseudotyped lentiviral vectors (BaEV-LVs). Transduced cells displayed stable CAR-expression, unimpeded proliferation, and increased cytotoxic activity against CD33-positive OCI-AML2 and primary AML cells in vitro. Furthermore, CD33-CAR-NK cells strongly reduced leukemic burden and prevented bone marrow engraftment of leukemic cells in OCI-AML2 xenograft mouse models without observable side effects.
Project description:On September 2, 2017, the U.S. Food and Drug Administration approved gemtuzumab ozogamicin (GO; Mylotarg; Pfizer, New York City, NY) for treatment of relapsed or refractory (R/R) CD33-positive acute myeloid leukemia (AML) in patients 2 years of age and older. GO is a CD33-directed antibody drug conjugate linked to the cytotoxic antibiotic calicheamicin. It originally received accelerated approval for treatment of older patients with relapsed CD33-positive AML in 2000, but it was withdrawn from the market in 2010 when the confirmatory trial failed to demonstrate clinical benefit among safety concerns, such as a higher rate of induction fatalities on the GO combination arm compared with chemotherapy alone. In addition, GO was associated with hepatic veno-occlusive disease (VOD), which has substantial morbidity and mortality. Pharmacokinetic analyses suggested a lower maximum concentration of GO would result in less VOD without affecting target saturation or efficacy. A meta-analysis across dose schedules of GO in patients with R/R AML showed that a lower-dose "fractionated" schedule of 3 mg/m2 days 1, 4, and 7 was associated with less early mortality, hemorrhage, and VOD, without an apparent decrease in complete remission (CR) rate. MyloFrance 1 was a single-arm study evaluating response rates in patients with relapsed CD33-positive AML treated with the lower-dose fractionated GO regimen. The CR rate was 26% (95% confidence interval 16%-40%). Common adverse reactions were fever, infections, nausea, vomiting, constipation, bleeding, increased liver enzymes, and mucositis. There were no cases of VOD. These results supported the approval of GO as monotherapy for R/R CD33-positive AML using the lower-dose fractionated regimen. IMPLICATIONS FOR PRACTICE:Gemtuzumab ozogamicin (GO) 3 mg/m2 days 1, 4, and 7 is an active regimen for induction of remission when used to treat patients with relapsed or refractory CD33-positive acute myeloid leukemia without curative intent. The risks of hepatic veno-occlusive disease and early mortality with this regimen appear to be lower than reported previously for GO 9 mg/m2 days 1 and 15. The data were not sufficient to enable conclusions about the safety of GO in children younger than 2 years of age.
Project description:Patients with relapsed or refractory (r/r) acute myeloid leukemia (AML) have a poor prognosis and treatment remains challenging. For the majority of r/r patients, allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative treatment approach. Salvage therapy is given in order to reduce the leukemia load prior to transplantation. Patients achieving complete remission prior to allogeneic HSCT have a more favorable outcome. Intensive salvage regimens commonly consist of an anthracycline and high-dose cytarabine backbone. Donor lymphocyte infusions have shown efficacy in patients relapsing after allogeneic HSCT. For patients who cannot be intensively treated (eg, elderly AML patients), outcome is generally very poor and combinations with novel agents are currently under investigation. Mutational analysis should be repeated at the time of relapse to identify aberrations that can be targeted with new agents. For r/r AML patients with mutated fms-related tyrosine kinase 3 (FLT3), gilteritinib has shown superior results to intensive salvage regimens. The US Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved gilteritinib for FLT3 mutated r/r AML patients. Ivosidenib and enasidenib, inhibitors for mutated isocitrate dehydrogenase (IDH) 1 and 2, respectively, have received approval for IDH1/IDH2 mutated r/r AML by the FDA (not EMA). APR-246 restores the function of mutated TP53 and early study results are promising. Other agents targeting CD47, menin, neural-precursor-cell-expressed developmentally down-regulated 8, as well as bispecific antibodies or chimeric antigen receptor T cells are under investigation. Further trials are needed to understand how to best combine novel agents with each other or with chemotherapy.
Project description:BackgroundGuadecitabine is a novel DNA methyltransferase (DNMT) inhibitor with improved pharmacokinetics and clinical activity in a subset of patients with relapsed/refractory acute myeloid leukemia (r/r AML), but identification of this subset remains difficult.MethodsTo search for biomarkers of response, we measured genome-wide DNA methylation, mutations of 54 genes, and expression of a panel of 7 genes in pre-treatment samples from 128 patients treated at therapeutic doses in a phase I/II study.ResultsResponse rate to guadecitabine was 17% (2 complete remission (CR), 3 CR with incomplete blood count recovery (CRi), or CR with incomplete platelets recovery (CRp)) in the phase I component and 23% (14 CR, 9 CRi/CRp) in phase II. There were no strong mutation or methylation predictors of response. Gene expression clustering defined a subset of patients (~ 20%) that had (i) high DNMT3B and low CDKN2B, CTCF, and CDA expression; (ii) enrichment for KRAS/NRAS mutations; (iii) frequent CpG island hypermethylation; (iv) low long interspersed nuclear element 1 (LINE-1) hypomethylation after treatment; and (v) resistance to guadecitabine in both phase I (response rate 0% vs. 33%, p = 0.07) and phase II components of the study (response rate 5% vs. 30%, p = 0.02). Multivariate analysis identified peripheral blood (PB) blasts and hemoglobin as predictors of response and cytogenetics, gene expression, RAS mutations, and hemoglobin as predictors of survival.ConclusionsA subset of patients (~ 20%) with r/r AML is unlikely to benefit from guadecitabine as a single agent. In the remaining 80%, guadecitabine is a viable option with a median survival of 8 months and a 2-year survival rate of 21%.Trial registrationNCT01261312 .
Project description:Guadecitabine is a second generation DNA methylation inhibitor with improved pharmacokinetics and clinical activity in relapsed/refractory AML (rrAML). Here we report genome-wide DNA methylation profiles in pre-treatment samples from 116 rrAML patients treated at therapeutic doses of guadecitabine in a phase I/II study. Response rate to guadecitabine was 22 % (16CR, 42 12CRi/CRp). There were no strong mutation or methylation predictors of response. Gene expression defined a subset of patients (~20%) that had (i) high DNMT3B and low CDKN2B, CTCF and CDA expression, (ii) enrichment for KRAS/NRAS mutations, (iii) frequent CpG island hypermethylation (iv) low LINE1 hypomethylation after treatment and (v) resistance to guadecitabine in both phase I (response rate 0 % vs 33 %, p=0.07) and phase II components of the study (response rate 5 % vs. 30 %, p=0.02). Multivariate analysis identified peripheral blood blasts and hemoglobin as predictors of response and cytogenetics, gene expression, RAS mutations and hemoglobin as predictors of survival. Thus, a subset of patients (∿ 20%) with rrAML are unlikely to benefit from single agent guadecitabine. In the remaining 80%, guadecitabine is a viable option with a median survival of ∿ 8 months and a three year survival rate of over 20%.
Project description:Over the past decades, survival of patients with acute lymphoblastic leukemia (ALL) has dramatically improved, but the subgroup of patients with relapsed/refractory ALL still continues to have dismal prognosis. As an emerging therapeutic approach, chimeric antigen receptor-modified T-cells (CAR-T) represent one of the few practice-changing therapies for this subgroup of patients. Originally conceived and built in Philadelphia (University of Pennsylvania), CTL019 or tisagenlecleucel, the first CAR-T approved by the US Food and Drug Administration, showed impressive results in refractory/relapsed ALL since the publication on two pediatric patients in 2013. It is in this context that we provide a review of this product in terms of manufacturing, pharmacology, toxicity, and efficacy studies. Evaluation and management of toxicities, particularly cytokine release syndrome and neurotoxicity, is recognized as an essential part of the patient treatment with broader use of IL-6 receptor inhibitor. An under-assessed aspect, the quality of life of patients entering CAR-T cells treatment, will also be reviewed. By their unique nature, CAR-T cells such as tisagenlecleucel operate in a different way than typical drugs, but also provide unique hope for B-cell malignancies.
Project description:In recent decades, survival was significantly improved in B cell acute lymphoblastic leukemia (B-ALL) patients. But refractory and relapsed B-ALL still has aggressive clinical behavior and poor prognosis. Especially, the patients with central nervous system infiltration is very difficult to achieve complete remissions with routine treatment. Chimeric antigen receptor-modified T-cell therapy targeting CD-19 has shown to be a beneficial treatment approach in refractory and relapsed B cell acute lymphoblastic leukemia (r/r ALL). However, there are very few studies reporting to treatment of refractory and relapsed B cell ALL with central nervous system infiltration. Here, we reported one single case of a patient diagnosed with relapsed B cell ALL with CNS infiltration who was successfully treated by second generation CAR containing a co-stimulator CD28 or 4-1BB therapy. Long-term proliferation of CAR-T cells in peripheral blood and bone marrow was observed more than 18 months. After CAR-T treatment, the patient got toxicity of grade 1 cytokine release syndrome and achieved significantly 36 months event free survival of follow-up. It is suggested that CD-19 CAR containing CD28 or 4-1BB costimulatory may be an effective therapy in refractory and relapsed B cell ALL with central nervous system infiltration. Its toxicity is mild, and its safety is high. Clinical Trial Registration:ClinicalTrials.gov Identifier: NCT02349698.
Project description:Relapsed/refractory acute myeloid leukemia (AML) patients generally have a dismal prognosis and the treatment remains challenging. Due to the expression of CD7 on 30% AML and not on normal myeloid and erythroid cells, CD7 is an attractive target for immunotherapy of AML. CD7-targeted CAR T-cells had demonstrated encouraging efficacy in xenograft models of AML. We report here on the use of autologous CD7 CAR T-cells in the treatment of a relapsed/refractory AML patient with complex karyotype, TP53 deletion, FLT3-ITD mutation, and SKAP2-RUNX1 fusion gene. Before the CAR T-cell therapy, the patient achieved partial remission with IA regimen and attained complete remission after reinduction therapy (decitabine and venentoclax). Relapse occurred after consolidation (CLAG regimen). Then she failed CLIA regimen combined with venetoclax and exhibited resistance to FLT3 inhibitors. Bone marrow showed 20% blasts (CD7+ 95.6%). A total dose of 5 × 106/kg CD7 CAR T-cells was administered after the decitabine +FC regimen. Seventeen days after CAR T-cells infusion, she achieved morphologic leukemia-free state. The patient developed grade 3 cytokine release syndrome. No severe organ toxicity or immune effector cell-associated neurotoxicity syndrome was observed. In summary, the autologous CD7 CAR T-cell therapy could be considered a potential approach for AML with CD7 expression (NCT04762485).Trial registration Clinical Trials.gov, NCT04762485. Registered on February 21, 2021, prospectively registered.