Project description:Detection of causal variant for thrombocytopenia and second hit causing malignant disease onset by next-generation sequencing. The sample was taken at MDS diagnosis, the illness later developed into AML.
Project description:AbstractFamilial platelet disorder with associated myeloid malignancies (FPDMM) is caused by germline RUNX1 mutations and characterized by thrombocytopenia and increased risk of hematologic malignancies. We recently launched a longitudinal natural history study for patients with FPDMM. Among 27 families with research genomic data by the end of 2021, 26 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 25 of 51 (49%) patients without hematologic malignancy, somatic mutations were detected in at least 1 of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 6 other CHIP- or AML-driver genes (TET2, DNMT3A, KRAS, LRP1B, IDH1, and KMT2C) were also found in ≥2 patients without hematologic malignancy. Moreover, 3 unrelated patients (1 with myeloid malignancy) carried somatic mutations in NFE2, which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in older adult patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring changes in somatic mutations and clinical manifestations prospectively may reveal mechanisms for malignant progression and inform clinical management. This trial was registered at www.clinicaltrials.gov as #NCT03854318.
Project description:Pathogenic loss-of-function RUNX1 germline variants cause autosomal dominantly-inherited familial platelet disorder with predisposition to hematologic malignancies (RUNX1-FPD). RUNX1-FPD is characterized by incomplete penetrance and a broad spectrum of clinical phenotypes, even within affected families. Heterozygous RUNX1 germline variants set the basis for leukemogenesis, but, on their own, they are not transformation-sufficient. Somatically acquired secondary events targeting RUNX1 and/or other hematologic malignancy-associated genes finally lead to MDS, AML, and rarely other hematologic malignancies including lymphoid diseases. The acquisition of different somatic variants is a possible explanation for the variable penetrance and clinical heterogeneity seen in RUNX1-FPD. However, individual effects of secondary variants are not yet fully understood. Here, we review 91 cases of RUNX1-FPD patients who predominantly harbor somatic variants in genes such as RUNX1, TET2, ASXL1, BCOR, PHF6, SRSF2, NRAS, and DNMT3A. These cases illustrate the importance of secondary events in the development and progression of RUNX1-FPD-associated hematologic malignancies. The leukemia-driving interplay of predisposing germline variants and acquired variants remain to be elucidated to better understand clonal evolution and malignant transformation and finally allow risk-adapted surveillance and targeted therapeutic measures to prevent leukemia.
Project description:RUNX1 familial platelet disorder (RUNX1-FPD) is an autosomal dominant disorder caused by a monoallelic mutation of RUNX1, initially resulting in approximately half-normal RUNX1 activity. Clinical features include thrombocytopenia, platelet functional defects, and a predisposition to leukemia. RUNX1 is rapidly degraded through the ubiquitin-proteasome pathway. Moreover, it may autoregulate its expression. A predicted kinetic property of autoregulatory circuits is that transient perturbations of steady-state levels result in continued maintenance of expression at adjusted levels, even after inhibitors of degradation or inducers of transcription are withdrawn, suggesting that transient inhibition of RUNX1 degradation may have prolonged effects. We hypothesized that pharmacological inhibition of RUNX1 protein degradation could normalize RUNX1 protein levels, restore the number of platelets and their function, and potentially delay or prevent malignant transformation. In this study, we evaluated cell lines, induced pluripotent stem cells derived from patients with RUNX1-FPD, RUNX1-FPD primary bone marrow cells, and acute myeloid leukemia blood cells from patients with RUNX1 mutations. The results showed that, in some circumstances, transient expression of exogenous RUNX1 or inhibition of steps leading to RUNX1 ubiquitylation and proteasomal degradation restored RUNX1 levels, thereby advancing megakaryocytic differentiation in vitro. Thus, drugs retarding RUNX1 proteolytic degradation may represent a therapeutic avenue for treating bleeding complications and preventing leukemia in RUNX1-FPD.
Project description:A subset of patients with familial platelet disorder with propensity to myeloid malignancy and germline RUNX1 mutation develops hematological malignancies, often myelodysplastic syndrome/acute myeloid leukemia, currently recognized in the 2016 WHO classification. Patients who develop hematologic malignancies are typically young, respond poorly to conventional therapy, and need allogeneic stem cell transplant from non-familial donors. Understanding the spectrum of bone marrow morphologic and genetic findings in these patients is critical to ensure diagnostic accuracy and develop criteria to recognize the onset of hematologic malignancies, particularly myelodysplastic syndrome. However, bone marrow features remain poorly characterized. To address this knowledge gap, we analyzed the clinicopathologic and genetic findings of 11 patients from 7 pedigrees. Of these, 6 patients did not develop hematologic malignancies over a 22-month follow-up period; 5 patients developed hematologic malignancies (3 acute myeloid leukemia; 2 myelodysplastic syndrome). All patients had thrombocytopenia at initial presentation. All 6 patients who did not develop hematologic malignancies showed baseline bone marrow abnormalities: low-for-age cellularity (n=4), dysmegakaryopoiesis (n=5), megakaryocytic hypoplasia/hyperplasia (n=5), and eosinophilia (n=4). Two patients had multiple immunophenotypic alterations in CD34-positive myeloblasts; 1 patient had clonal hematopoiesis. In contrast, patients who developed hematologic malignancies had additional cytopenia(s) (n=4), abnormal platelet granulation (n=5), bone marrow hypercellularity (n=4), dysplasia in ≥2 lineages including megakaryocytes (n=3) and acquired clonal genetic aberrations (n=5). In conclusion, our study demonstrated that specific bone marrow abnormalities and acquired genetic alterations may be harbingers of progression to hematological malignancies in patients with familial platelet disorder with germline RUNX1 mutation.
Project description:Germline mutations of runt-related transcription factor-1 (RUNX1) cause familial platelet disorder with predisposition to myeloid malignancy (FPDMM), most commonly associated with thrombocytopenia and propensity to develop myeloid neoplasms. A key clinical question is which patients with a family history of thrombocytopenia should undergo genetic testing for RUNX1 mutations. Typically, molecular diagnosis by genetic sequencing is performed when the clinical phenotype is suggestive of this diagnosis; however, our understanding of the spectrum of associated features suggestive of this diagnosis continues to evolve. Herein, we report a case series of 3 unrelated families with RUNX1-associated FPDMM and clinical phenotypes not typically reported with this condition. These cases expand our understanding of FPDMM and highlight the complexity of transcriptional regulation of hematopoiesis and its potentially diverse phenotypes. We describe our approach to diagnosis and management of these individuals and the importance of long-term surveillance in these cases.
Project description:RNA derived from lymphoblasts from individuals with FPD-AML is compared to that from related unaffected individuals. Keywords: other
Project description:ObjectivesTo report aberrant myeloblasts detected by flow cytometry immunophenotypic studies in an asymptomatic patient with familial platelet disorder with propensity to myeloid malignancy, a rare autosomal dominant disease caused by germline heterozygous mutations in Runt-related transcription factor 1.MethodsMorphologic evaluation, flow cytometry immunophenotypic studies, nanofluidics-based qualitative multiplex reverse transcriptase polymerase chain reaction, Sanger sequencing, and next-generation sequencing-based mutational hotspot analysis of 53 genes were performed on bone marrow biopsy and aspirate samples.ResultsFlow cytometry immunophenotypic analysis showed 0.6% CD34+ blasts with an abnormal immunophenotype: CD13 increased, CD33+, CD38 decreased, CD117 increased, and CD123 increased.ConclusionsThe acquisition of new phenotypic aberrancies in myeloblasts as detected by flow cytometry immunophenotypic studies might be a harbinger of impending myelodysplastic syndrome or acute myeloid leukemia in a patient with familial platelet disorder with propensity to myeloid malignancy.