Project description:Carbon-based nanomaterials have been regarded as promising non-noble metal catalysts for renewable energy conversion system (e.g., fuel cells and metal-air batteries). In general, graphitic skeleton and porous structure are both critical for the performances of carbon-based catalysts. However, the pursuit of high surface area while maintaining high graphitization degree remains an arduous challenge because of the trade-off relationship between these two key characteristics. Herein, a simple yet efficient approach is demonstrated to fabricate a class of 2D N-doped graphitized porous carbon nanosheets (GPCNSs) featuring both high crystallinity and high specific surface area by utilizing amine aromatic organoalkoxysilane as an all-in-one precursor and FeCl3 ·6H2 O as an active salt template. The highly porous structure of the as-obtained GPCNSs is mainly attributed to the alkoxysilane-derived SiOx nanodomains that function as micro/mesopore templates; meanwhile, the highly crystalline graphitic skeleton is synergistically contributed by the aromatic nucleus of the precursor and FeCl3 ·6H2 O. The unusual integration of graphitic skeleton with porous structure endows GPCNSs with superior catalytic activity and long-term stability when used as electrocatalysts for oxygen reduction reaction and Zn-air batteries. These findings will shed new light on the facile fabrication of highly porous carbon materials with desired graphitic structure for numerous applications.
Project description:The generation of sustainable and stable semiconductors for solar energy conversion by photoredox catalysis, for example, light-induced water splitting and carbon dioxide reduction, is a key challenge of modern materials chemistry. Here we present a simple synthesis of a ternary semiconductor, boron carbon nitride, and show that it can catalyse hydrogen or oxygen evolution from water as well as carbon dioxide reduction under visible light illumination. The ternary B-C-N alloy features a delocalized two-dimensional electron system with sp(2) carbon incorporated in the h-BN lattice where the bandgap can be adjusted by the amount of incorporated carbon to produce unique functions. Such sustainable photocatalysts made of lightweight elements facilitate the innovative construction of photoredox cascades to utilize solar energy for chemical conversion.
Project description:The coordination chemistry of the 1,2-BN-cyclohexanes 2,2-R2 -1,2-B,N-C4 H10 (R2 =HH, MeH, Me2 ) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid-state (X-ray diffraction) characterization of [Ir(PCy3 )2 (H)2 (η(2) η(2) -H2 BNR2 C4 H8 )][BAr(F) 4 ] (NR2 =NH2 , NMeH) and [Rh(iPr2 PCH2 CH2 CH2 PiPr2 )(η(2) η(2) -H2 BNR2 C4 H8 )][BAr(F) 4 ] (NR2 =NH2 , NMeH, NMe2 ). For NR2 =NH2 subsequent metal-promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC4 H8 ]3 , via amino-borane and, tentatively characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR2 =NMeH the final product is the cyclic amino-borane HBNMeC4 H8 . The mechanism of dehydrogenation of 2,2-H,Me-1,2-B,N-C4 H10 using the {Rh(iPr2 PCH2 CH2 CH2 PiPr2 )}(+) catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh2 (iPr2 PCH2 CH2 CH2 PiPr2 )2 H5 ][BAr(F) 4 ]. Using the initial rate method starting from this dimer, a first-order relationship to [amine-borane], but half-order to [Rh] is established, which is suggested to be due to a rapid dimer-monomer equilibrium operating.
Project description:Molybdenum disulfide (MoS2) has been attracting much attentions due to its excellent electrical and optical properties. We report here the synthesis of large-scale and uniform MoS2 nanosheets with vertically standing morphology using chemical vapor deposition method. TEM observations clearly reveal the growth mechanism of these vertical structures. It is suggested that the vertical structures are caused by the compression and extrusion between MoS2 islands. More importantly, the vertical morphology of two dimensional (2D) materials hold many promising potential applications. We demonstrate here the as-synthesized vertically standing MoS2 nanosheets could be used for hydrogen evolution reaction, where the exchange current density is about 70 times of bulk MoS2. The field emission performance of vertically standing MoS2 were also improved due to the abundantly exposed edges.
Project description:The high-temperature plasma process has demonstrated great potential in growing high-quality boron nitride nanotubes (BNNTs) with small diameters (∼5 nm) and few walls (3-4 walls) and led to successful commercialization with a high production rate approaching 20 g/h. However, the process is still accompanied by the production of BN impurities (e.g., a-BN, BN shell, BN flakes) whose physicochemical properties are similar to those of BNNTs. This renders the post-purification process very challenging and thus hampers the development of their practical applications. In this study, we have employed both experimental and numerical approaches for a mechanistic understanding of BN impurity formation in the high-temperature plasma process. This study suggests that the flow structure of the plasma jet (e.g., laminar or turbulent) plays a key role in the formation of BN impurities by dictating the transport phenomena of BNNT seeds (e.g., B droplets), which play an important role in BNNT nucleation. We discussed that the turbulence enhances the radial diffusion of B droplets as well as their interparticle coagulation, which leads to a significant reduction in the population of effective BNNT seeds in the BNNT growth zone (T < 4000 K). This results in the generation of unreacted BN precursors (e.g., B-N-H species) in the BNNT growth zone that eventually self-assemble into BN impurities. Our numerical simulation also suggests that a higher thermal energy input makes the flow more turbulent in the BNNT growth zone due to the elevated velocity difference between the plasma jet and ambient cold gas. This finding provides critical insight into the process design that can suppress the BN impurity formation in the high-temperature plasma process.
Project description:Polymer-based nanodielectrics have been intensively investigated for their potential application as energy storage capacitors. However, their relatively low energy density (Ue) and discharging efficiency (η) may greatly limit their practical usage. In present work, high insulating two-dimensional boron nitride nanosheets (BNNS), were introduced into a linear dielectric polymer (P(VDF-TrFE-CTFE)-g-PMMA) matrix to enhance the energy storage performance of the composite. Thanks to the surface coating of polydopamine (PDA) on BN nanosheets, the composite filled with 6 wt% coated BNNS (mBNNS) exhibits significantly improved breakdown strength (Eb) of 540 MV/m and an energy density (Ue) of 11 J/cm³, which are increased by 23% and 100%, respectively as compared with the composite filled with the same content of pristine BNNS. Meanwhile, η of both composites is well retained at around 70% even under a high voltage of 400 MV/m, which is superior to most of the reported composites. This work suggests that complexing polymer matrix with linear dielectric properties with surface coated BNNS fillers with high insulating 2D structure might be a facile strategy to achieve composite dielectrics with simultaneously high energy density and high discharging efficiency.
Project description:In this paper, we report a novel anCd simple method for synthesizing the microspheres self-assembled from ultrathin anatase TiO2 nanosheets with a high percentage of (001) facets via the hydrolysis process of the single-reagent (potassium fluorotitanate). We then used optical microscopy, scanning electron microscopy, and high-resolution confocal laser Raman spectroscopy to characterize the microspheres generated under different conditions. The study found that the size of the anatase TiO2 microspheres synthesized was 0.5-3 μm. As the synthesis time increased, the corroded surface of the microspheres gradually increased, resulting in the gradual disappearance of the edges and corners of the anatase nanosheets. The exposure percentage of the (001) facets of ultrathin anatase nanosheets synthesized for 2 h at 180-200 °C are close to 100%. The microsphere whose surface is completely covered by these anatase nanosheets also has nearly 100% exposed (001) facets. This new anatase nanosheet-based self-assembled microsphere will have great application potential in pollution prevention, environmental protection, and energy fields.
Project description:Nanoscrolls (NSs) assembled from two-dimensional nanosheets have emerged as a novel type of one-dimensional nanomaterials because of their unique topological features and properties. The scale-up preparation of the NSs is crucial for their foundational and applied research. Herein, we report a general and straightforward approach for efficiently converting two-dimensional nanosheets into the NSs with high yield. We demonstrated the converting process by illustrating the formation of the graphene nanoscrolls through characterizing their morphology and structure using a scanning electron microscope, transmission electron microscope, Raman spectra, and X-ray diffraction spectra. The graphene sheets with a few-lay number were converted immediately and entirely into the graphene nanoscrolls when they mixed with an ethanol solution of silver nitrate at room temperature. The as-prepared graphene nanoscrolls were confirmed to be formed via the layer-by-layer assembly of graphene triggered by silver cyanide formed in site. Also, we extended this approach to construct the nanoscrolls of the hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide, respectively, from their corresponding two-dimensional nanomaterials. In a broader context, this approach paves a significant new way for the large production of the NSs with cost-efficiency.
Project description:With the rapid development of modern electrical and electronic applications, the demand for high-performance film capacitors is becoming increasingly urgent. The energy density of a capacitor is dependent on permittivity and breakdown strength. However, the development of polymer-based composites with both high permittivity (εr) and breakdown strength (Eb) remains a huge challenge. In this work, a strategy of doping synergistic dual-fillers with complementary functionalities into polymer is demonstrated, by which high εr and Eb are obtained simultaneously. Small-sized titania nanosheets (STNSs) with high εr and high-insulating boron nitride sheets coated with polydopamine on the surface (BN@PDA) were introduced into poly(vinylidene fluoride) (PVDF) to prepare a ternary composite. Remarkably, a PVDF-based composite with 1 wt% BN@PDA and 0.5 wt% STNSs (1 wt% PVDF/BN@PDA-STNSs) shows an excellent energy storage performance, including a high εr of ~13.9 at 1 Hz, a superior Eb of ~440 kV/mm, and a high discharged energy density Ue of ~12.1 J/cm3. Moreover, the simulation results confirm that BN@PDA sheets improve breakdown strength and STNSs boost polarization, which is consistent with the experimental results. This contribution provides a new design paradigm for energy storage dielectrics.
Project description:The first example of catalytic B-H activation of azaborines leading to a new family of stilbene derivatives through dehydrogenative borylation is reported. Ten 1,2-azaborine-based BN isosteres of stilbenes have been synthesized using this method, including a BN isostere of a biologically active stilbene. It is demonstrated that BN/CC isosterism in the context of stilbenes can lead to significant changes in the observed photophysical properties such as higher quantum yield and a larger Stokes shift. Direct comparative analysis of BN stilbene 3g and its carbonaceous counterpart 6g is consistent with a stronger charge-transfer character of the excited state exhibited by 3g in which the 1,2-azaborine heterocycle serves as a better electron donor than the corresponding arene.